Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B). \eex$$ (The corresponding relation for determinants is an easy equality.)

Solution. Let $$\bex A=\sex{\ba{cc} \al_1\\ \vdots\\ \al_n \ea},\quad B=\sex{\beta_1,\cdots,\beta_n}. \eex$$ Then $$\bex AB=\sex{\sef{\al_i,\beta_j}}. \eex$$ By Exercise I.5.7, $$\beex \bea |\per (AB)|^2 &=\sev{\per (\sef{\al_i,\beta_j})}^2\\ &\leq \per (\sef{\al_i,\al_j})\cdot \per (\sef{\beta_i,\beta_j})\\ &=\per(AA^*)\cdot \per(B^*B). \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.8的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. C语言标记化结构初始化语法

    C语言标记化结构初始化语法 (designated initializer),而且还是一个ISO标准. #include <stdio.h> #include <stdlib.h&g ...

  2. 【Passport】微软过时的技术

    虽然已过时,没来得及体验,摘录一段别人的文章,假装对passport的了解 微软在过去的身份验证服务上,一直采用的Passport验证,但已经是N年前推出来的一个软件架构,当然也被软件界很多地方采用到 ...

  3. js截取所需字符串长度

    //title :字符串  :interceptLength:所需的长度 function TitleThumbnail(title, interceptLength, thumbnailCharac ...

  4. easy ui datagrid 设置冻结列

    为了冻结列,您需要定义 frozenColumns 属性.frozenColumn 属性和 columns 属性一样. $('#tt').datagrid({ title:'Frozen Column ...

  5. Apple移动设备处理器指令集 armv6、armv7、armv7s及arm64-b

    Arm处理器,因为其低功耗和小尺寸而闻名,几乎所有的手机处理器都基于arm,其在嵌入式系统中的应用非常广泛,它的性能在同等功耗产品中也很出色. Armv6.armv7.armv7s.arm64都是ar ...

  6. PAT-乙级-1032. 挖掘机技术哪家强(20)

    1032. 挖掘机技术哪家强(20) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 为了用事实说明挖掘机技术到底 ...

  7. Unity3D开发之查找面板上某个脚本(包括Missing)

    原地址:http://blog.csdn.net/lihandsome/article/details/24265411 有时候我们需要知道某个脚本在场景上面哪里用到,或者那个脚本被删除了但又没有把相 ...

  8. hdu 4678 Mine 博弈论

    这是一题简单的博弈论!! 所有的空白+边界的数字(个数为n)为一堆,容易推出其SG函数值为n%2+1: 其他所有的数字(个数为m)的SG值为m%2. 再就是用dfs将空白部分搜一下即可!(注意细节) ...

  9. 【原创】oracle的tpc-c测试及方法

    大家好,很高兴来到博客园分享自己的所见所得.希望和大家多多交流,共同进步. 本文重点在于简介使用BenchmarkSQL对oracle进行tpcc的测试步骤,只是一个简单入门的过程. 开源测试工具:B ...

  10. CentOS 命令随笔

     linux下敲命令时:快速删除当前行已经敲的命令: CTR+U  或者 CTR+/                         快速删除当前行刚输入接近鼠标当前位置的单词:CTR+W 以上在XS ...