Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B). \eex$$ (The corresponding relation for determinants is an easy equality.)

Solution. Let $$\bex A=\sex{\ba{cc} \al_1\\ \vdots\\ \al_n \ea},\quad B=\sex{\beta_1,\cdots,\beta_n}. \eex$$ Then $$\bex AB=\sex{\sef{\al_i,\beta_j}}. \eex$$ By Exercise I.5.7, $$\beex \bea |\per (AB)|^2 &=\sev{\per (\sef{\al_i,\beta_j})}^2\\ &\leq \per (\sef{\al_i,\al_j})\cdot \per (\sef{\beta_i,\beta_j})\\ &=\per(AA^*)\cdot \per(B^*B). \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.8的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 【BZOJ 1054】 [HAOI2008]移动玩具

    Description 在一个4*4的方框内摆放了若干个相同的玩具,某人想将这些玩具重新摆放成为他心中理想的状态,规定移动时只能将玩具向上下左右四个方向移动,并且移动的位置不能有玩具,请你用最少的移动 ...

  2. Experience all that SharePoint 15 has to offer. Start now or Remind me later.

    $spSite = Get-SpSite($waUrl); $spSite.AllowSelfServiceUpgrade = $false

  3. 基于内嵌Tomcat的应用开发

    为什么使用内嵌Tomcat开发? 开发人员无需搭建Tomcat的环境就可以使用内嵌式Tomcat进行开发,减少搭建J2EE容器环境的时间和开发时容器频繁启动所花时间,提高开发的效率. 怎么搭建内嵌To ...

  4. windows下游戏服务器端框架Firefly安装说明及demo运行

    原地址:http://blog.csdn.net/wangqiuyun/article/details/11150503 本来公司一个网游服务器端选定了pomelo框架,后来出了个Firefly,为做 ...

  5. mysql语句中把string类型字段转datetime类型

    mysql语句中把string类型字段转datetime类型   在mysql里面利用str_to_date()把字符串转换为日期   此处以表h_hotelcontext的Start_time和En ...

  6. 2013 Multi-University Training Contest 4 Who's Aunt Zhang

    看题就知道要用polya,但是当时没做出来,还是不是很熟悉polya!!! 总共有24种置换: 1. 不做任何旋转 K ^ (54 + 12 + 8) 2. 绕相对面中心的轴转 1) 90度 K ^ ...

  7. redis其他问题

    如何解决redis高并发客户端频繁time out? 现在业务上每天有5亿+的请求,平时redis的操作在2K+每秒左右.到了高峰有3K+,这时候客户端就会频繁的报connect time out的异 ...

  8. boost在linux下的编译和使用

    上一篇boost在windows可以正常的使用了,但是在linux下不行. [尝试一:使用和windows同一套代码编译,编译时报错] 我是在Ubuntu使用共享文件夹的方式和windows使用的同一 ...

  9. Android:ViewPager适配器PagerAdapter的使用

    PageAdapter是一个抽象类,直接继承于Object,导入包android.support.v4.view.PagerAdapter即可使用. 要使用PagerAdapter, 首先要继承Pag ...

  10. win7 64bit下最新Apahe2.4.18+php7.0.2+MySQL5.7.10配置

    原文:win7 64bit下最新Apahe2.4.18+php7.0.2+MySQL5.7.10配置 一.说明 以前配置apache+php+mysql都是参考网上的,一般都没有什么问题.最近公司有个 ...