[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.8
Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B). \eex$$ (The corresponding relation for determinants is an easy equality.)
Solution. Let $$\bex A=\sex{\ba{cc} \al_1\\ \vdots\\ \al_n \ea},\quad B=\sex{\beta_1,\cdots,\beta_n}. \eex$$ Then $$\bex AB=\sex{\sef{\al_i,\beta_j}}. \eex$$ By Exercise I.5.7, $$\beex \bea |\per (AB)|^2 &=\sev{\per (\sef{\al_i,\beta_j})}^2\\ &\leq \per (\sef{\al_i,\al_j})\cdot \per (\sef{\beta_i,\beta_j})\\ &=\per(AA^*)\cdot \per(B^*B). \eea \eeex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.8的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- HttpWebRequest
同步请求===================================================================================== byte[] da ...
- Angular与React的一些看法
Angular - React之争 Angular和React无疑是目前最受追捧的两个前端框架,谷歌也发现Angular1.x不足的地方,开始开发2.0版本,脸书发现React的组件化和虚拟DOM非常 ...
- BZOJ 4146 [AMPPZ2014] Divisors 解题报告
这个题感觉比较小清新... 我们记录每个数出现的次数 $T_i$. 首先依次枚举每个数字,令 $ans = ans + T_i \times (T_i - 1)$,然后枚举这个数的倍数,令 $ans ...
- [转]LINQ操作数据库
查询表达式(LINQ)简介 C#3.0新语特性和改进,这些新特性在我们编写程序时为我们提供了非常大的帮助.从这篇开始,我们开始一起来探讨LINQ. LINQ是Language Integrated Q ...
- IIC驱动分析
IIC设备是一种通过IIC总线连接的设备,由于其简单性,被广泛引用于电子系统中.在现代电子系统中,有很多的IIC设备需要进行相互之间通信 IIC总线是由PHILIPS公司开发的两线式串行总线,用于连接 ...
- hdu 1729 Stone Game 博弈论
那么对于这题对于每一堆,放石子放满就想当于满的时候取s-c个,反向只是让我理解题意更深. 首先我们知道(S,S)这个局面是必败局面.对于每一堆能加的数量有限,而当c的值(大于或者等于) D=sqrt( ...
- thinkphp 独立分组配置
详见tp官网. 此处为笔记: <?php return array( // 0,为普通分组,1为独立分组 ', // 独立分组目录 'APP_GROUP_PATH' => 'Modules ...
- iphone6S“玫瑰金”的秘密——阳极氧化
阳极氧化对多数人来说是一个熟悉又陌生的名词,大多数可能知道它的作用之一就是是能使金属呈现各种各样色彩.最为人熟知的运用阳极氧化技术的产品就是iphone系列产品了,已经推出了金色,玫瑰金色,深空灰色, ...
- Android:控件布局(绝对布局)AbsoluteLayout
绝对布局也叫坐标布局,指定元素的绝对位置,因为适应性很差,一般很少用到.可以使用RelativeLayout替代. 常用属性: android:layout_x --------组件x坐标 andr ...
- 第一章 CLR的执行模型
编译器将源代码编译为托管模块.托管木块包含: PE32或PE32+头 CLR头 元数据 IL(中间语言)代码 PE32头的文件可在32或64位的电脑上运行,PE32+的只能在64上运行.Window6 ...