The problem. Given a set of N distinct points in the plane, draw every (maximal) line segment that connects a subset of 4 or more of the points.

Point data type. Create an immutable data type Point that represents a point in the plane by implementing the following API:

public class Point implements Comparable<Point> { public final Comparator<Point> SLOPE_ORDER; // compare points by slope to this point public Point(int x, int y) // construct the point (x, y) public void draw() // draw this point public void drawTo(Point that) // draw the line segment from this point to that point public String toString() // string representation public int compareTo(Point that) // is this point lexicographically smaller than that point? public double slopeTo(Point that) // the slope between this point and that point }

To get started, use the data type Point.java, which implements the constructor and the draw(), drawTo(), and toString() methods. Your job is to add the following components.

  • The compareTo() method should compare points by their y-coordinates, breaking ties by their x-coordinates. Formally, the invoking point (x0, y0) is less than the argument point (x1, y1) if and only if either y0 < y1 or if y0 = y1 and x0 < x1.
  • The slopeTo() method should return the slope between the invoking point (x0, y0) and the argument point (x1, y1), which is given by the formula (y1y0) / (x1x0). Treat the slope of a horizontal line segment as positive zero; treat the slope of a vertical line segment as positive infinity; treat the slope of a degenerate line segment (between a point and itself) as negative infinity.
  • The SLOPE_ORDER comparator should compare points by the slopes they make with the invoking point (x0, y0). Formally, the point (x1, y1) is less than the point (x2,y2) if and only if the slope (y1y0) / (x1x0) is less than the slope (y2y0) / (x2x0). Treat horizontal, vertical, and degenerate line segments as in the slopeTo() method.
import java.util.Comparator;

public class Point implements Comparable<Point> {

 public final Comparator<Point> SLOPE_ORDER = new PointCmp();

 private final int x; // x coordinate
private final int y; // y coordinate public Point(int x, int y) {
/* DO NOT MODIFY */
this.x = x;
this.y = y;
} public void draw() {
/* DO NOT MODIFY */
StdDraw.point(x, y);
} public void drawTo(Point that) {
/* DO NOT MODIFY */
StdDraw.line(this.x, this.y, that.x, that.y);
} public double slopeTo(Point that) {
/* YOUR CODE HERE */
if (this.compareTo(that) == 0)
return Double.POSITIVE_INFINITY*-1;
else if (this.x == that.x)
return Double.POSITIVE_INFINITY;
else if (this.y == that.y)
return +0;
else
return (that.y - this.y) * 1.0 / (that.x - this.x);
} private class PointCmp implements Comparator<Point> { @Override
public int compare(Point o1, Point o2) {
// TODO Auto-generated method stub
if (slopeTo(o1) < slopeTo(o2) || (slopeTo(o1) == slopeTo(o2) && o1.compareTo(o2) == -1))
return -1;
else if (slopeTo(o1) > slopeTo(o2) || (slopeTo(o1) == slopeTo(o2) && o1.compareTo(o2) == 1))
return 1;
else
return 0;
} } @Override
public int compareTo(Point that) {
// TODO Auto-generated method stub
if (this.y < that.y || (this.y == that.y && this.x < that.x))
return -1;
else if (this.y == that.y && this.x == that.x)
return 0;
else
return 1;
} public String toString() {
/* DO NOT MODIFY */
return "(" + x + ", " + y + ")";
} public static void main(String[] args) {
// TODO Auto-generated method stub
In in = new In(args[0]);
int num = in.readInt();
Point points[] = new Point[num];
for (int i = 0; i < num; i++) {
int x = in.readInt();
int y = in.readInt();
points[i] = new Point(x, y);
} } }

Brute force. Write a program Brute.java that examines 4 points at a time and checks whether they all lie on the same line segment, printing out any such line segments to standard output and drawing them using standard drawing. To check whether the 4 points p, q, r, and s are collinear, check whether the slopes between p and q, between p and r, and between p and s are all equal.

The order of growth of the running time of your program should be N4 in the worst case and it should use space proportional to N.

public class Brute {
public static void main(String[] args) {
// rescale coordinates and turn on animation mode
StdDraw.setXscale(0, 32768);
StdDraw.setYscale(0, 32768);
StdDraw.show(0);
StdDraw.setPenRadius(0.01); // make the points a bit larger // read in the input
String filename = args[0];
In in = new In(filename);
int N = in.readInt();
Point points[] = new Point[N];
for (int i = 0; i < N; i++) {
int x = in.readInt();
int y = in.readInt();
points[i] = new Point(x, y);
points[i].draw();
} for (int i = 0; i < N; i++) {
for (int j = 0; j < N - i - 1; j++) {
if (points[j].compareTo(points[j+1]) == 1) {
Point temp = points[j];
points[j] = points[j + 1];
points[j + 1] = temp;
}
}
} for (int i = 0; i < N; i++) {
for (int j = i + 1; j < N; j++) {
for (int k = j + 1; k < N; k++) {
for(int l = k + 1; l < N; l++) {
if(points[i].slopeTo(points[j]) == points[j].slopeTo(points[k])&&
points[j].slopeTo(points[k]) == points[k].slopeTo(points[l])) {
points[i].drawTo(points[l]);
StdOut.print(points[i].toString()+" -> "+points[j].toString()
+" -> "+points[k].toString()+" -> "+points[l].toString());
StdOut.println();
} }
}
}
} // display to screen all at once
StdDraw.show(0); // reset the pen radius
StdDraw.setPenRadius();
}
}

A faster, sorting-based solution. Remarkably, it is possible to solve the problem much faster than the brute-force solution described above. Given a point p, the following method determines whether p participates in a set of 4 or more collinear points.

  • Think of p as the origin.
  • For each other point q, determine the slope it makes with p.
  • Sort the points according to the slopes they makes with p.
  • Check if any 3 (or more) adjacent points in the sorted order have equal slopes with respect to p. If so, these points, together with p, are collinear.

Applying this method for each of the N points in turn yields an efficient algorithm to the problem. The algorithm solves the problem because points that have equal slopes with respect to p are collinear, and sorting brings such points together. The algorithm is fast because the bottleneck operation is sorting.

Write a program Fast.java that implements this algorithm. The order of growth of the running time of your program should be N2 log N in the worst case and it should use space proportional to N.

源代码待补;

Programming Assignment 3: Collinear Points的更多相关文章

  1. 课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 3.Programming Assignment : Planar data classification with a hidden layer

    Planar data classification with a hidden layer Welcome to the second programming exercise of the dee ...

  2. Algorithms : Programming Assignment 3: Pattern Recognition

    Programming Assignment 3: Pattern Recognition 1.题目重述 原题目:Programming Assignment 3: Pattern Recogniti ...

  3. Algorithms: Design and Analysis, Part 1 - Programming Assignment #1

    自我总结: 1.编程的思维不够,虽然分析有哪些需要的函数,但是不能比较好的汇总整合 2.写代码能力,容易挫败感,经常有bug,很烦心,耐心不够好 题目: In this programming ass ...

  4. Programming Assignment 5: Kd-Trees

    用2d-tree数据结构实现在2维矩形区域内的高效的range search 和 nearest neighbor search.2d-tree有许多的应用,在天体分类.计算机动画.神经网络加速.数据 ...

  5. Programming Assignment 2: Randomized Queues and Deques

    实现一个泛型的双端队列和随机化队列,用数组和链表的方式实现基本数据结构,主要介绍了泛型和迭代器. Dequeue. 实现一个双端队列,它是栈和队列的升级版,支持首尾两端的插入和删除.Deque的API ...

  6. 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 2、编程作业常见问题与答案(Programming Assignment FAQ)

    Please note that when you are working on the programming exercise you will find comments that say &q ...

  7. Programming Assignment 3: Pattern Recognition

    编程作业三 作业链接:Pattern Recognition & Checklist 我的代码:BruteCollinearPoints.java & FastCollinearPoi ...

  8. Programming Assignment 4: Boggle

    编程作业四 作业链接:Boggle & Checklist 我的代码:BoggleSolver.java 问题简介 Boggle 是一个文字游戏,有 16 个每面都有字母的骰子,开始随机将它们 ...

  9. Coursera Algorithms Programming Assignment 3: Pattern Recognition (100分)

    题目原文详见http://coursera.cs.princeton.edu/algs4/assignments/collinear.html 程序的主要目的是寻找n个points中的line seg ...

随机推荐

  1. IOS NSNotificationCenter 通知的使用

    1.注册通知 [NSNotificationCenter defaultCenter] addObserver:self selector:@selector(notify) name:@" ...

  2. Ubuntu 14.04配置FTP服务器

    搭建: 1.sudo apt-get update                                        #更新软件 2.sudo apt-get install vsftpd ...

  3. 【windows核心编程】DLL相关(2)

    关于DLL的延迟加载 延迟加载DLL,使用的是隐式加载方式,当为exe使用的DLL指定为延迟加载的时候,连接器会将exe的[导入段]中去除该DLL的相关信息,同时在exe中嵌入一个新的[延迟加载段]表 ...

  4. 【windows核心编程】DLL相关(1)

    DLL相关的东西 1.DLL的加载方式 隐式: #pragma comment(lib, "XX.lib"); 编译器去查找名为XX.dll的DLL,除了名字相同,该DLL和该LI ...

  5. Linux性能监控之Memory篇

    首先说说虚拟内存和物理内存: 虚拟内存就是采用硬盘来对物理内存进行扩展,将暂时不用的内存页写到硬盘上而腾出更多的物理内存让有需要的进程来用.当这些内存页需要用的时候在从硬盘读回内存.这一切对于用户来说 ...

  6. thread.join函数,java多线程中的join函数解析

    join函数的作用,是让当前线程等待,直到调用join()的 线程结束或者等到一段时间,我们来看以下代码 package mian; public class simpleplela { static ...

  7. Chapter4:表达式

    左值和右值 当一个对象被用作右值的时候,用的是对象的值(内容),当对象被用作左值的时候,用的是对象的身份(在内存中的位置). 一个重要的原则是需要右值的地方可以用左值来代替,但是不能把右值当作左值使用 ...

  8. mybatis系列-06-输入映射

    通过parameterType指定输入参数的类型,类型可以是简单类型.hashmap.pojo的包装类型 6.1     传递pojo的包装对象 6.1.1     需求 完成用户信息的综合查询,需要 ...

  9. Hierarchical cluster算法介绍

    突然想记录几个聚类算法,由于实力有限就先介绍一下层次聚类算法(Hierarchical cluster algorithm),这个聚类算法思想简单,但实现起来感觉复杂度挺大:以前看过<集体智慧编 ...

  10. 03 javadoc

    javadoc从程序源代码中抽取类.方法.成员等注释形成一个和源代码配套的API帮助文档 1.标签.命令格式: 2.使用方式: 2.1 dos命令行格式:javadoc XXX.java 2.2 ec ...