题目说明:

假设有个集合拥有n个元素,任意的从集合中取出m个元素,则这m个元素所形成的可能子集有那些?

题目解析:

假设有5个元素的集合,取出3个元素的可能子集如下:

{1 2 3}、{1 2 4 }、{1 2 5}、{1 3 4}、{1 3 5}、{1 4 5}、{2 3 4}、{2 3 5}、{2 4 5}、{3 4 5}

这些子集已经使用字典顺序排列,如此才可以观察出一些规则:

  1. 如果最右一个元素小于m,则如上面一样的不断加1
  2. 如果右边一位已至最大值,则加1的位置往左移
  3. 每次加1的位置往左移后,必须重新调整右边的元素为递减顺序

所以关键点就在于哪一个位置必须进行加1的动作,到底是最右一个位置要加1?还是其它的位置?
在实际撰写程式时,可以使用一个变数positon来记录加1的位置,position的初值设定为n-1,因为我们要使用队列,而最右边的索引值为最大的n-1,在position位置的值若小于m就不断加1,如果等于m了,position就减1,也就是往左移一个位置;由于位置左移后,右边的元素会经过调整,所以我们必须检查最右边的元素是否小于m,如果是,则position调整回n-1,如果不是,则positon维持不变。

程序代码:

#include <gtest/gtest.h>
using namespace std; void ShowResult(int data[], int M)
{
for (int i=0; i<M; i++)
{
cout << data[i] << " ";
}
cout << endl;
} int GenerateMFromN(int N, int M)
{
int nCount = 0;
if (M==0)
{
return 1;
} int* State = new int[M];
for (int i=0; i<M; i++)
{
State[i] = i+1;
} nCount++;
ShowResult(State, M); int nPos = M-1; while (State[0] < N-M+1)
{
if (State[M-1] == N)
{
nPos--;
}
else
{
nPos = M-1;
} State[nPos]++; for (int i = nPos+1; i < M; i++)
{
State[i] = State[i-1] + 1;
} ShowResult(State, M);
nCount++;
} delete [] State; return nCount;
} TEST(Algo, tGenerateMFromN)
{
// 3选0组合 3!/(0!*(3)!) = 1
ASSERT_EQ(GenerateMFromN(3,0), 1); // 5选3组合 5!/(3!*(5-3)!) = 10
ASSERT_EQ(GenerateMFromN(5,3), 10); // 5选5组合 5!/(5!*8!) = 1
ASSERT_EQ(GenerateMFromN(5,5), 1); // 10选2组合 10!/(2!*8!) = 45
ASSERT_EQ(GenerateMFromN(10,2), 45);
}
 

[经典算法] 排列组合-N元素集合的M元素子集的更多相关文章

  1. [经典算法] 排列组合-N元素集合的所有子集(一)

    题目说明: 给定一组数字或符号,产生所有可能的集合(包括空集合),例如给定1 2 3,则可能的集合为:{}.{1}.{1,2}.{1,2,3}.{1,3}.{2}.{2,3}.{3}. 题目解析: 如 ...

  2. [经典算法] 排列组合-N元素集合的所有子集(二)

    题目说明: 给定一组数字或符号,按照字典序产生所有可能的集合(包括空集合),例如给定1 2 3,则可能的集合为:{}.{1}.{1,2}.{1,2,3}.{1,3}.{2}.{2,3}.{3}. 题目 ...

  3. python算法-排列组合

    排列组合 一.递归 1.自己调用自己 2.找到一个退出的条件 二.全排列:针对给定的一组数据,给出包含所有数据的排列的组合 1:1 1,2:[[1,2],[2,1]] 1,2,3:[[1,2,3],[ ...

  4. HDU5145:5145 ( NPY and girls ) (莫队算法+排列组合+逆元)

    传送门 题意 给出n个数,m次访问,每次询问[L,R]的数有多少种排列 分析 \(n,m<=30000\),我们采用莫队算法,关键在于区间如何\(O(1)\)转移,由排列组合知识得到,如果加入一 ...

  5. java 删除整数元素集合中的元素

    1. 简介 对于整数类型的元素集合,例如{1, 2, 3, 4, 5},再进行元素删除时需要注意.在List中删除操作有remove(int index)和remove(Object o), 查看两种 ...

  6. 递归算法之排列组合-求一个集合S的m个元素的组合和所有可能的组合情况

    求一个集合S的m个元素组合的所有情况,并打印出来,非常适合采用递归的思路进行求解.因为集合的公式,本身就是递归推导的: C(n,m) = C(n-1,m-1) + C(n-1,m). 根据该公式,每次 ...

  7. 原生JS获取元素集合的子元素宽度

    有些时候,在一个网页的ul li中,存在左右两个部分的内容,但是右边元素内容又是不固定,左边元素相对应的不能用固定宽度,所有需要我们动态的获取右边元素宽度,来赋值给左边元素的marginRight值. ...

  8. 操作jQuery集合搜索父元素

    搜索父元素 1.1parents()方法 parents()方法用于获取u当前匹配元素集合中的每个元素的祖先元素,根据需要还可以使用一个选择器进行筛选parents([selector]) 其中sel ...

  9. PHP的排列组合问题 分别从每一个集合中取出一个元素进行组合,问有多少种组合?

    首先说明这是一个数学的排列组合问题C(m,n) = m!/(n!*(m-n)!) 比如:有集合('粉色','红色','蓝色','黑色'),('38码','39码','40码'),('大号','中号') ...

随机推荐

  1. django 命名空间详解

    include(module[, namespace=None, app_name=None ]) include(pattern_list) include((pattern_list, app_n ...

  2. poj 2239 Selecting Courses(二分匹配简单模板)

    http://poj.org/problem?id=2239 这里要处理的是构图问题p (1 <= p <= 7), q (1 <= q <= 12)分别表示第i门课在一周的第 ...

  3. C#中的结构体与类的区别

    经常听到有朋友在讨论C#中的结构与类有什么区别.正好这几日闲来无事,自己总结一下,希望大家指点. 1. 首先是语法定义上的区别啦,这个就不用多说了.定义类使用关键字class 定义结构使用关键字str ...

  4. js 浮点小数计算精度问题 parseFloat 精度问题

    在js中进行以元为单位进行金额计算时 使用parseFloat会产生精度问题 var price = 10.99; var quantity = 7; var needPay = parseFloat ...

  5. Java字面常量与常量池

    Java中的字面常量(区别于final创建的有名常量)通常会保存在常量池中,常量池可以理解为像堆一样的内存区域.但是常量池有一个特性就是,如果常量池中已存在该常量将不会再次为该常量开辟内存 还是看个程 ...

  6. SetWindowsHookEx 相关

    SetWindowsHookEx function https://msdn.microsoft.com/en-us/library/windows/desktop/ms644990(v=vs.85) ...

  7. mysql主从同步单个表实验记录

    问题的提出: 在CRM管理系统与运营基础数据平台之间需要有数据表进行交换,说是交换,其实是单向的,就是CRM里面的一些数据需要实时同步到运营基础数据平台中. 解决方案: A.采用时间戳的办法进行代码开 ...

  8. 64位ubuntu下装32位软件

    本帖最后由 wuy069 于 2013-10-25 12:28 编辑 很多软件只有32位的,有的依赖32位库还挺严重的:从ubuntu 13.10已经废弃了ia32-libs,但可以使用多架构,安装软 ...

  9. C#中的ICollection接口

    一.集合类: 1.1 ICollection接口 前面我们学习了数组,这是.net Framework定义的最基本的集合类型,除过数组外,.net Framework还另外定义了很多集合类型以满足编程 ...

  10. C语言排序算法

    (1)“冒泡法” 冒泡法大家都较熟悉.其原理为从a[0]开始,依次将其和后面的元素比较,若a[0]>a[i],则交换它们,一直比较到a[n].同理对a[1],a[2],...a[n-1]处理,即 ...