3529: [Sdoi2014]数表

Description

有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为
能同时整除i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。

Input

输入包含多组数据。
    输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据。

Output

对每组数据,输出一行一个整数,表示答案模2^31的值。

Sample Input

2
4 4 3
10 10 5

Sample Output

20
148
 
 
【分析】
  
  先假设没有a的限制。。
  设g(i)=ΣΣ[(x,y)==i](1<=x<=n,1<==y<=m)
     g(i)=Σmu[d]*(n/(i*d))*(m/(i*d))
     尝试把i和d分开,设D=i*d
  那么g(i)=(n/D)*(M/D)*Σmu[i/D]  (i|D)
  设f(i)为i的约数和,这个可以nlogn求出来,那么ans=g(i)*f(i)=(n/D)*(M/D)*Σmu[i/D]*f(i) (i|D)
 
  对于a的限制,是说f(i)<=a的东西对ans有贡献,其他的没有贡献。
  所以就离线一下~~按照f(i)排序,询问按照a排序,因为要询问前缀和,所以当他开始有贡献的时候就把他放到树状数组里面去。
  剩下的就是分块处理了。
 
  Mod的地要自然溢出最后取模?不然会超时,像我一样~
 
 

  别人的题解:

 
 
代码如下:
 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define Maxn 100010
#define LL unsigned int
#define INF 0xfffffff
LL mx;
LL Mod; int mu[Maxn];
LL pri[Maxn],pl;
bool q[Maxn]; struct node
{
LL x,y,a,ans,id;
}t[Maxn],f[Maxn]; LL mymin(LL x,LL y) {return x<y?x:y;}
LL mymax(LL x,LL y) {return x>y?x:y;} bool cmp(node x,node y) {return x.a<y.a;}
bool cmp2(node x,node y) {return x.id<y.id;} void get_mu()
{
pl=;
memset(q,,sizeof(q));
mu[]=;
for(LL i=;i<=mx;i++)
{
if(q[i])
{
pri[++pl]=i;
mu[i]=-;
}
for(LL j=;j<=pl;j++)
{
if(i*pri[j]>mx) break;
q[i*pri[j]]=;
if(i%pri[j]==) mu[i*pri[j]]=;
else mu[i*pri[j]]=-mu[i];
if(i%pri[j]==) break;
}
}
for(LL i=;i<=mx;i++) f[i].a=;
for(LL i=;i<=mx;i++)
for(LL j=i;j<=mx;j+=i)
f[j].a=f[j].a+i;
for(LL i=;i<=mx;i++) f[i].id=i;
} LL c[Maxn],as[Maxn]; LL add(LL x,LL y)
{
as[x]+=y;
for(LL i=x;i<=mx;i+=i&(-i))
c[i]+=y;
} LL get_sum(LL x)
{
LL ans=;
for(LL i=x;i>=;i-=i&(-i))
ans+=c[i];
return ans;
} void change(LL x)
{
LL now=f[x].id;
for(LL i=now;i<=mx;i+=now)
add(i,(LL)(mu[i/now]*f[x].a));
} LL get_ans(LL n,LL m)
{
LL ans=,t;
if(n>m) t=n,n=m,m=t; LL sq=(LL)ceil(sqrt((double)m));
for(LL i=;i<=mymin(sq,n);i++)
{
LL x=(LL)(n/i),y=(LL)(m/i);
ans+=as[i]*(n/i)*(m/i);
} for(LL i=sq+;i<=n;)
{
LL x=n/i,y=m/i;
LL r1=n/x+,r2=m/y+;
if(r1>n+) r1=n+;
if(r2>n+) r2=n+;
LL r=mymin(r1,r2); ans+=(get_sum(r-)-get_sum(i-))*x*y;
i=r;
} return ans;
} int main()
{
Mod=;
for(LL i=;i<=;i++) Mod*=; LL T;
T=;
scanf("%d",&T); mx=; for(LL i=;i<=T;i++)
{
scanf("%d%d%d",&t[i].x,&t[i].y,&t[i].a);
mx=mymax(mx,mymin(t[i].x,t[i].y));
t[i].id=i;
}
sort(t+,t++T,cmp);
get_mu();
sort(f+,f++mx,cmp); memset(c,,sizeof(c));
memset(as,,sizeof(as));
LL now=;
for(LL i=;i<=T;i++)
{
while(f[now].a<=t[i].a&&now<=mx) change(now),now++;
t[i].ans=get_ans(t[i].x,t[i].y);
}
sort(t+,t++T,cmp2); for(LL i=;i<=T;i++)
{
printf("%d\n",(t[i].ans%Mod+Mod)%Mod);
}
return ;
}

[BZOJ 3529]

2016-09-03 10:57:57

 

【BZOJ 3529】 [Sdoi2014]数表 (莫比乌斯+分块+离线+树状数组)的更多相关文章

  1. 【bzoj3529】[Sdoi2014]数表 莫比乌斯反演+离线+树状数组

    题目描述 有一张n×m的数表,其第i行第j列(1 <= i <= n ,1 <= j <= m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...

  2. BZOJ3529: [Sdoi2014]数表 莫比乌斯反演_树状数组

    Code: #include <cstdio> #include <algorithm> #include <cstring> #define ll long lo ...

  3. BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)

    题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...

  4. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  5. BZOJ 3529 [Sdoi2014]数表 ——莫比乌斯反演 树状数组

    $ans=\sum_{i=1}^n\sum_{j=1}^n\sigma(gcd(i,j))$ 枚举gcd为d的所有数得到 $ans=\sum_{d<=n}\sigma(d)*g(d)$ $g(d ...

  6. BZOJ 1878: [SDOI2009]HH的项链 离线树状数组

    1878: [SDOI2009]HH的项链 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  7. 【BZOJ3529】数表(莫比乌斯反演,树状数组)

    [BZOJ3529]数表(莫比乌斯反演,树状数组) 题解 首先不管\(A\)的范围的限制 要求的东西是 \[\sum_{i=1}^n\sum_{j=1}^m\sigma(gcd(i,j))\] 其中\ ...

  8. P1972 [SDOI2009]HH的项链[离线+树状数组/主席树/分块/模拟]

    题目背景 无 题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH 不断地收集新的贝壳,因此,他的项链 ...

  9. bzoj 2434: 阿狸的打字机 fail树+离线树状数组

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=2434 题解: 首先我们可以发现这个打字的过程本身就是在Trie上滚来滚去的过程 所以我们 ...

随机推荐

  1. VBA控件ListBox的BoundColumn和TextColumn用法,Value和Text的用法

    在使用Excel编写VBA程序时,用到ListBox,然后研究了下它的所有属性.其实这个控件功能很不好用,太老了,最重要的是还不支持鼠标滚轮,很不好操作,但是考虑到兼容性,还是使用它. 其实读取.写入 ...

  2. Linux软件安装与卸载

    一. 了解Linux应用软件安装包: 通常Linux应用软件的安装包有三种: 1) tar包,如software-1.2.3-1.tar.gz.它是使用UNIX系统的打包工具tar打包的. 2) rp ...

  3. sqlserver临时表排序问题

    在2005和2008中,如果将有序的记录插入临时表,则从临时表查看出来的记录是有序的(不使用Order by也是有序状态) 但从2012开始,即使插入的记录集是有序的,查看出来的结果变得无序了,需要依 ...

  4. c语言学习之基础知识点介绍(十四):指针的进阶

    一.指针的加.减法运算 /* 1.加法运算 1).可以跟整数进行加法运算,得到的还是一个地址 公式: 地址 + 1 = 地址 + 1 * 类型所占的字节数 地址 + n = 地址 + n * 类型所占 ...

  5. 3.redis.3.2 下载,安装、配置、使用、集群主从创建 - 3

    当然,集群最主要的就是配置文件: 简单配置如下, port 7001 bind 127.0.0.1 databases 16 appendonly yes appendfilename "a ...

  6. 【转】浅析Windows编程的剪贴板

    摘要: 本文对Windows剪贴板机制作了深入.全面的阐述,具体内容包括:文本.位图.DSP.自定义格式剪贴板的使用和多数据项和延迟提交技术. 关键词: VC++6.0: 剪贴板机制:数据格式:延迟提 ...

  7. 添加samba用户,并设置密码

    5.3.3 添加samba用户,并设置密码; 我们用的方法是先添加用户,但添加的这些用户都是虚拟用户,因为这些用户是不能通过SHELL登录系统的;另外值得注意的是系统用户密码和Samba用户的密码是不 ...

  8. WPF动画之关键帧动画(2)

    XAML代码: <Window x:Class="关键帧动画.MainWindow" xmlns="http://schemas.microsoft.com/win ...

  9. OpenJudge 1806:词典find()与end()

    1806:词典 总时间限制:  3000ms  内存限制:  65536kB 描述 你旅游到了一个国外的城市.那里的人们说的外国语言你不能理解.不过幸运的是,你有一本词典可以帮助你. 输入 首先输入一 ...

  10. C++类继承内存布局(三)

    参考:http://blog.csdn.net/jiangyi711/article/details/4890889# (三)成员函数 类X中每一个非静态成员函数都会接受一个特殊的隐藏参数——this ...