Sightseeing tour
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 8628   Accepted: 3636

Description

The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that tourists can see every corner of the beautiful city. They want to construct the tour so that every street in the city is visited exactly once. The bus should also start and end at the same junction. As in any city, the streets are either one-way or two-way, traffic rules that must be obeyed by the tour bus. Help the executive board and determine if it's possible to construct a sightseeing tour under these constraints.

Input

On the first line of the input is a single positive integer n, telling the number of test scenarios to follow. Each scenario begins with a line containing two positive integers m and s, 1 <= m <= 200,1 <= s <= 1000 being the number of junctions and streets, respectively. The following s lines contain the streets. Each street is described with three integers, xi, yi, and di, 1 <= xi,yi <= m, 0 <= di <= 1, where xi and yi are the junctions connected by a street. If di=1, then the street is a one-way street (going from xi to yi), otherwise it's a two-way street. You may assume that there exists a junction from where all other junctions can be reached.

Output

For each scenario, output one line containing the text "possible" or "impossible", whether or not it's possible to construct a sightseeing tour.

Sample Input

4
5 8
2 1 0
1 3 0
4 1 1
1 5 0
5 4 1
3 4 0
4 2 1
2 2 0
4 4
1 2 1
2 3 0
3 4 0
1 4 1
3 3
1 2 0
2 3 0
3 2 0
3 4
1 2 0
2 3 1
1 2 0
3 2 0

Sample Output

possible
impossible
impossible
possible   题意:给你一个图,其中既有有向边又有无向边,要你判断图中是否存在欧拉回路。
  这题难点就在于讨论无向边的方向。首先,欧拉回路图有个性质:所有点的入度等于出度。然后又发现,对于某点连出去的一条无向边,改变它的方向,这个点的(出度-入度)奇偶性不变。所以先给无向边随意定向,然后判断是否有点的(出度-入度)为奇数,有就绝逼不可能有欧拉回路。
  然而到这里还没有完,每个点的(出度-入度)都为偶数并不代表改变那些无向边的方向就可以形成一个欧拉回路图。
  现在的问题类似于网络流的分配问题,设一个点的(出度-入度)为d,那么将d大于零的点和d小于零的点分成两个集合,保留原来的无向边,容量为1……具体还是看程序吧。
 #include <iostream>
#include <cstring>
#include <cstdio>
#include <queue> using namespace std;
const int INF=;
const int maxn=,maxm=;
int cnt,fir[maxn],nxt[maxm],cap[maxm],to[maxm],dis[maxn],gap[maxn],path[maxn];
int In[maxn],Out[maxn];
void addedge(int a,int b,int c)
{
nxt[++cnt]=fir[a];
to[cnt]=b;
cap[cnt]=c;
fir[a]=cnt;
} bool BFS(int S,int T)
{
memset(dis,,sizeof(dis));
dis[T]=;
queue<int>q;q.push(T);
while(!q.empty())
{
int node=q.front();q.pop();
for(int i=fir[node];i;i=nxt[i])
{
if(dis[to[i]])continue;
dis[to[i]]=dis[node]+;
q.push(to[i]);
}
}
return dis[S];
}
int fron[maxn];
int ISAP(int S,int T)
{
if(!BFS(S,T))
return ;
for(int i=;i<=T;i++)++gap[dis[i]];
int p=S,ret=;
memcpy(fron,fir,sizeof(fir));
while(dis[S]<=T+)
{
if(p==T){
int f=INF;
while(p!=S){
f=min(f,cap[path[p]]);
p=to[path[p]^];
}
p=T;ret+=f;
while(p!=S){
cap[path[p]]-=f;
cap[path[p]^]+=f;
p=to[path[p]^];
}
}
int &ii=fron[p];
for(;ii;ii=nxt[ii]){
if(!cap[ii]||dis[to[ii]]+!=dis[p])
continue;
else
break;
} if(ii){
p=to[ii];
path[p]=ii;
} else{
if(--gap[dis[p]]==)break;
int minn=T+;
for(int i=fir[p];i;i=nxt[i])
if(cap[i])
minn=min(minn,dis[to[i]]);
gap[dis[p]=minn+]++;
fron[p]=fir[p];
if(p!=S)
p=to[path[p]^];
}
}
return ret;
} void Init()
{
memset(fir,,sizeof(fir));
memset(gap,,sizeof(gap));
memset(In,,sizeof(In));
memset(Out,,sizeof(Out));
cnt=;
}
int main()
{
int T,n,m;
scanf("%d",&T);
while(T--)
{
Init();
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int u,v,k;
scanf("%d%d%d",&u,&v,&k);
In[v]++;Out[u]++;
if(!k)
addedge(u,v,),addedge(v,u,);
}
int flag=;
for(int i=;i<=n;i++){
int d=Out[i]-In[i];
if(d&){
flag=;
break;
}
if(d>)addedge(,i,d/),addedge(i,,);
if(d<)addedge(i,n+,d/(-)),addedge(n+,i,);
}
if(flag)
ISAP(,n+);
for(int i=fir[];i;i=nxt[i])
if(cap[i])
flag=; if(flag)
puts("possible");
else
puts("impossible");
}
return ;
}
最后感谢邝斌的题解,%%%

网络流(最大流) POJ 1637 Sightseeing tour的更多相关文章

  1. POJ 1637 Sightseeing tour(最大流)

    POJ 1637 Sightseeing tour 题目链接 题意:给一些有向边一些无向边,问能否把无向边定向之后确定一个欧拉回路 思路:这题的模型很的巧妙,转一个http://blog.csdn.n ...

  2. POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]

    嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...

  3. POJ 1637 Sightseeing tour (混合图欧拉路判定)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6986   Accepted: 2901 ...

  4. POJ 1637 Sightseeing tour (SAP | Dinic 混合欧拉图的判断)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6448   Accepted: 2654 ...

  5. POJ 1637 Sightseeing tour

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9276   Accepted: 3924 ...

  6. POJ 1637 Sightseeing tour (混合图欧拉回路)

    Sightseeing tour   Description The city executive board in Lund wants to construct a sightseeing tou ...

  7. [POJ 1637] Sightseeing tour(网络流)

    题意 (混合图的欧拉回路判定) 给你一个既存在有向边, 又存在无向边的图. 问是否存在欧拉回路. \(N ≤ 200, M ≤ 1000\) 题解 难点在于无向边. 考虑每个点的度数限制. 我们先对无 ...

  8. POJ 1637 Sightseeing tour(混合图欧拉回路+最大流)

    http://poj.org/problem?id=1637 题意:给出n个点和m条边,这些边有些是单向边,有些是双向边,判断是否能构成欧拉回路. 思路: 构成有向图欧拉回路的要求是入度=出度,无向图 ...

  9. poj 1637 Sightseeing tour——最大流+欧拉回路

    题目:http://poj.org/problem?id=1637 先给无向边随便定向,如果一个点的入度大于出度,就从源点向它连 ( 入度 - 出度 / 2 ) 容量的边,意为需要流出去这么多:流出去 ...

随机推荐

  1. CentOS 6.7 编译安装Nginx 1.8.0

    1.配置编译环境 yum update && yum upgrade yum groupinstall "Development Tools" 或者 yum ins ...

  2. 11.2 morning

    noip模拟题day1——棋盘上的问题 day1模拟题 By FancyCoder总览(Overview)注意事项:共3道题目,时间2.5小时.Pascal选手允许使用math库和ansistring ...

  3. 10.31 afternoon

    巧克力棒(chocolate)Time Limit:1000ms Memory Limit:64MB题目描述LYK 找到了一根巧克力棒,但是这根巧克力棒太长了, LYK 无法一口吞进去.具体地,这根巧 ...

  4. maven提示错误的解决办法

    import或者new一个的maven project的时候,提示如下错误 Description    Resource    Path    Location    TypeCannot read ...

  5. Jmeter软件测试2--http接口测试

    上次利用Jmeter进行了webservice接口的测试,本次利用Jmeter进行http接口的测试 1.新建线程组 2.新建配置文件 3.新建http请求 4.配置动态请求 4.查看测试结果

  6. 深入理解ReentrantLock

    在Java中通常实现锁有两种方式,一种是synchronized关键字,另一种是Lock.二者其实并没有什么必然联系,但是各有各的特点,在使用中可以进行取舍的使用.首先我们先对比下两者. 实现: 首先 ...

  7. 仿小米网jQuery全屏滚动插件fullPage.js

    演 示 下 载   简介 如今我们经常能见到全屏网站,尤其是国外网站.这些网站用几幅很大的图片或色块做背景,再添加一些简单的内容,显得格外的高端大气上档次.比如 iPhone 5C 的介绍页面,QQ浏 ...

  8. 初涉JavaScript模式 (1) : 简介

    什么是模式? 广义上的模式是指 :在物体或事件上,产生的一种规律变化与自我重复的样式与过程.在模式之中,某些固定的元素不断以可预测的方式周期性重现.最基本而常见的模式,称为密铺,具备重复性以及周期性两 ...

  9. html5系列.基础知识

    兼容性问题 创建一个html5页面 <!DOCTYPE html> <html> <head> <meta charset="UTF-8" ...

  10. Flask_SqlAlchemy 1215, 'Cannot add f oreign key constraint'

    Flask_SqlAlchemy 1215, 'Cannot add f oreign key constraint'报错 sqlalchemy.exc.IntegrityError: (pymysq ...