作者:桂。

时间:2017-04-06  12:29:26

链接:http://www.cnblogs.com/xingshansi/p/6672908.html

声明:欢迎被转载,不过记得注明出处哦~


前言

之前在梳理最小二乘的时候,矩阵方程有一类可以利用非负矩阵分解(Non-negative matrix factorization, NMF)的方法求解,经常见到别人提起这个算法,打算对此梳理一下。优化问题求解,最基本的是问题描述与准则函数的定义,紧接着才涉及准则函数的求解问题,本文为NMF系列第一篇,主要梳理:

  1)矩阵方程基本问题;

  2)准则函数定义;

内容为自己的学习总结,其中多有借鉴他人的地方,最后一并给出链接。

一、矩阵方程基本问题

本段描述NMF对应的基本问题。

许多问题都可以建模成矩阵方程:

${\bf{AS}} = {\bf{X}}$

其中根据向量和矩阵的不同,矩阵方程的求解主要分为以下三类问题:

1)超定矩阵方程;m>n,$\bf{X}$和$\bf{A}$均已知,其中之一或二者可能存在观测误差、干扰;

2)盲矩阵方程:仅向量$\bf{X}$已知,矩阵$\bf{A}$未知;

3)欠定稀疏矩阵方程:m<n,$\bf{X}$和$\bf{A}$均已知.

每一类问题,都有对应的方法:如对于盲矩阵方程,由于只有观测向量$\bf{X}$,因此引入误差的时候只能假设观测向量存在误差,而不会像最小二乘那样分为普通最小二乘、数据最小二乘、总体最小二乘。给出矩阵方程及对应求解的示意图:

其实${\bf{AS}} = {\bf{X}}$仅仅是一个线性表达,求解本身没有非负的限制。但对于现实中很多应用:比如一张图片,可以认为它由鼻子、眼睛、眉毛...等等拼成,每一个成分对应一些像素值,而这些理论上都应该是非负的,因此在一些矩阵求解问题中,我们希望加入非负的限制。本系列文章主要针对其中的:盲矩阵方程求解——非负矩阵分解算法

二、准则函数定义

这里只分析最常用的两类准则函数,对于广义AB-散度不作讨论。假设非负矩阵${\bf{X}}$可以分解成:

${\bf{AS}} = {\bf{X}}$

由于观测数据${\bf{X}}$难免带来误差,因此有:

${\bf{X}} = {\bf{AS}}  + \bf{N}$

针对误差最小化,引入准则函数:

下面分析准则函数$D\left( {{\bf{X}}|{\bf{AS}}} \right)$.

  A-平方欧几里得(Euclidean)距离

当假设误差服从正态分布时,此时的最大似然估计与最小二乘等价,此时对应的准则函数为平方Euclidean距离,有时为了求导方便常添加比例系数1/2:

  B-Kullback-Leibler(KL)散度

1-KL定义

首先给出KL散度定义:

KL散度与Euclidean距离不同,是非对称的。

2-KL的含义

KL不像Euclidean那么直观,这就有了一个疑问?这么古怪的家伙是从哪冒出来的?

下面一点点理解。

从图中很容易求解$(x_0,y_0)$处的切线方程,其实$x$如果接近$x_0$,这就是一阶Taylor近似,写成更一般的形式:

一阶Taylor逼近的误差则定义为:

推广开来这就是Bregman距离

令$\phi $:为定义在闭合凸集的一连续可微分凸函数。与函数$\phi $对应的两个向量:之间的Bregman距离记作:,定义为:

如果$\phi $取凸函数:

其实如果$x_i$看作是概率密度,这个就是熵的表达式啊,也就是这里函数调用熵的形式。此时,Bregman距离对应的就是Kullback-Leibler散度,也叫信息散度、信息增益、相对熵、I散度。

从而可以得到:

对号入座,同样可以得出准则函数:

这样一来,KL散度的实际意义就比较明显了它表达了不同信息熵一阶Taylor的近似,如果细究,二阶、三阶....Taylor近似同样可以得出

3-KL对应分布

Euclidean距离对应:误差服从正态分布,KL散度是不是也该对应某种分布?答案是当然——泊松分布。泊松分布前面有文章分析过。泊松分布就常见的计数过程,描述的是一段时间事件发生的次数,与它关联较大的一个是二项分布,一个是指数分布。不过这里分析完之后,是不是该多出一个疑问:泊松分布与信息熵有何关系?下面说说泊松分布为什么可以对应KL散度。

给出泊松分布的定义:

从而对于两个分布:

概率相比并取对数:

已经有点KL散度的味道了,因为$x$是随机数,所以需要进行基于统计意义的均值计算:

KL散度就这么推导出来了。

参考:

张贤达《矩阵分析与应用》

非负矩阵分解(1):准则函数及KL散度的更多相关文章

  1. 非负矩阵分解(4):NMF算法和聚类算法的联系与区别

    作者:桂. 时间:2017-04-14   06:22:26 链接:http://www.cnblogs.com/xingshansi/p/6685811.html 声明:欢迎被转载,不过记得注明出处 ...

  2. KL散度相关理解以及视频推荐

    以下内容基于对[中字]信息熵,交叉熵,KL散度介绍||机器学习的信息论基础这个视频的理解,请务必先看几遍这个视频. 假设一个事件可能有多种结果,每一种结果都有其发生的概率,概率总和为1,也即一个数据分 ...

  3. 非负矩阵分解NMF

    http://blog.csdn.net/pipisorry/article/details/52098864 非负矩阵分解(NMF,Non-negative matrix factorization ...

  4. PRML读书会第十章 Approximate Inference(近似推断,变分推断,KL散度,平均场, Mean Field )

    主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望.或者计算边缘概率分布.条件 ...

  5. 推荐算法——非负矩阵分解(NMF)

    一.矩阵分解回想 在博文推荐算法--基于矩阵分解的推荐算法中,提到了将用户-商品矩阵进行分解.从而实现对未打分项进行打分. 矩阵分解是指将一个矩阵分解成两个或者多个矩阵的乘积.对于上述的用户-商品矩阵 ...

  6. 非负矩阵分解(NMF)原理及算法实现

    一.矩阵分解回想 矩阵分解是指将一个矩阵分解成两个或者多个矩阵的乘积.对于上述的用户-商品(评分矩阵),记为能够将其分解为两个或者多个矩阵的乘积,如果分解成两个矩阵和 .我们要使得矩阵和 的乘积能够还 ...

  7. paper 23 :Kullback–Leibler divergence KL散度(2)

    Kullback–Leibler divergence KL散度 In probability theory and information theory, the Kullback–Leibler ...

  8. 深度学习中交叉熵和KL散度和最大似然估计之间的关系

    机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论 ...

  9. KL散度(Kullback–Leibler divergence)

    KL散度是度量两个分布之间差异的函数.在各种变分方法中,都有它的身影. 转自:https://zhuanlan.zhihu.com/p/22464760 一维高斯分布的KL散度 多维高斯分布的KL散度 ...

随机推荐

  1. vim编译安装+lua模块

    vim编译安装+lua模块 使用背景:代码自动补全插件,需要安装lua模块 安装准备,首先下载安装vim所依赖的其它安装包,ncurses,lua,readline,vim 源码下载,编译安装 ncu ...

  2. CLOSE_WAIT TIME_WAIT

    TCP状态转移要点    TCP协议规定,对于已经建立的连接,网络双方要进行四次握手才能成功断开连接,如果缺少了其中某个步骤,将会使连接处于假死状态,连接本身占用的资源不会被释放.网络服务器程序要同时 ...

  3. 【转】Java通过IText导出word和pdf

    原帖地址:http://blog.csdn.net/zwx19921215/article/details/34439851 最近做的项目中需要用到把Highcharts图表导出word和pdf的功能 ...

  4. EWS 通过SubscribeToPullNotifications订阅Exchange新邮件提醒

    摘要 在ews中提供了一种拉通知的方式获取服务端邮件的操作,通过这种方式客户端可以订阅该通知,在邮箱有变化的时候,可以收到通知. 工作方式 EWS 通知是在订阅的基础上处理的.通常是一个订阅每个邮箱, ...

  5. 探究CSS中的包裹性

    之前一直都知道css中的部分元素具有包裹性,今天写博客的时候正好也遇到了一个,所以想总结一下,有错误的地方欢迎指出来. 什么是包裹性? 包裹性就是父元素的宽度会收缩到和内部元素宽度一样. 哪些元素具有 ...

  6. 免费ERP之云实施

    近日,普实渠道在AIO5软件免费一周年之际,推出了重磅的动作:启动AIO5云实施,推广小微企业免费ERP落地应用. 这无疑是推动客户免费应用ERP的重大里程碑. 当前,在中国小微企业信息化方面,应用情 ...

  7. 普实软件:MES机器数据维护

    概述 机器数据有两个菜单,机器主数据在制造数据模块下,机器MES数据相关的设置在MES模块下,两个菜单查看的内容是一致的,但是机器主数据显示的是普通的机器,可做新增.编辑.删除操作,机器MES数据仅做 ...

  8. centOS7 mini配置linux服务器(三) 配置防火墙以及IPtables切换

    一.firewall介绍 CentOS 7中防火墙是一个非常的强大的功能,在CentOS 6.5中在iptables防火墙中进行了升级了. 1.官方介绍 The dynamic firewall da ...

  9. Oracle 一些简单操作

    登录oracle 以root用户切换到oracle数据库用户:su - oracle 输入sqlplus /nolog 不连接任何数据库 conn /as sysdba 用sysdba登录 start ...

  10. 队列工厂之RabbitMQ

    本次和大家分享的是RabbitMQ队列的用法,前一篇文章队列工厂之(MSMQ)中在描述的时候已经搭建了简单工厂,因此本章内容是在其之上扩充的子项不再过多讲解工厂的代码了:RabbitMQ应该是现在互联 ...