hdu5950

题意

\(给出 f_1 , f_2 ,以及递推式 f_n = 2 * f_{n-2} + f_{n-1} + n^4 ,求 f_n (mod=2147493647)\)

推导一下。

\[\begin{Bmatrix}
f_n\\
f_{n-1}\\
f_{n-2}\\
(n+1)^4\\
(n+1)^3\\
(n+1)^2\\
(n+1)\\
1
\end{Bmatrix} =
\begin{Bmatrix}
1 & 2 & 0 & 1 & 0 & 0 & 0 & 0\\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 1 & 4 & 6 & 4 & 1\\
0 & 0 & 0 & 0 & 1 & 3 & 3 & 1\\
0 & 0 & 0 & 0 & 0 & 1 & 2 & 1\\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{Bmatrix} *
\begin{Bmatrix}
f_{n-1}\\
f_{n-2}\\
f_{n-3}\\
n^4\\
n^3\\
n^2\\
n\\
1
\end{Bmatrix}\]

矩阵快速幂即可。

code

#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<iostream>
#define ll long long
using namespace std; const ll MOD = 2147493647;
const int SIZE = 11;
ll n;
//定义结构体
struct Matrix
{
ll mat[SIZE][SIZE];
Matrix()
{
memset(mat, 0, sizeof mat);
}
};
//矩阵乘法 重载 * 操作符
Matrix operator * (Matrix a, Matrix b)
{
Matrix c;
memset(c.mat, 0, sizeof(c.mat));
for(int i = 0; i < SIZE; i++)
{
for(int j = 0; j < SIZE; j++)
{
for(int k = 0; k < SIZE; k++)
c.mat[i][j] = (c.mat[i][j] + a.mat[i][k] * b.mat[k][j]) % MOD;
}
}
return c;
}
//矩阵快速幂 重载 ^ 操作符
Matrix operator ^ (Matrix a, ll k)
{
Matrix t;
memset(t.mat, 0, sizeof(t.mat));
for(int i = 0; i < SIZE; i++) // 单位矩阵
t.mat[i][i] = 1;
while(k)
{
if(k & 1)
t = t * a;
a = a * a;
k >>= 1;
}
return t;
} int main()
{
int t;
scanf("%d", &t);
while(t--)
{
Matrix mt;
ll a, b;
scanf("%lld%lld%lld", &n, &a, &b);
ll c = 2 * a + b + 81;
c %= MOD;
if(n == 1) printf("%lld\n", a % MOD);
else if(n == 2) printf("%lld\n", b % MOD);
else if(n == 3) printf("%lld\n", c % MOD);
else
{
mt.mat[0][0] = 1;
mt.mat[0][1] = 2;
mt.mat[0][3] = 1;
mt.mat[1][0] = 1;
mt.mat[2][1] = 1;
mt.mat[3][3] = 1;
mt.mat[3][4] = 4;
mt.mat[3][5] = 6;
mt.mat[3][6] = 4;
mt.mat[3][7] = 1;
mt.mat[4][4] = 1;
mt.mat[4][5] = 3;
mt.mat[4][6] = 3;
mt.mat[4][7] = 1;
mt.mat[5][5] = 1;
mt.mat[5][6] = 2;
mt.mat[5][7] = 1;
mt.mat[6][6] = 1;
mt.mat[6][7] = 1;
mt.mat[7][7] = 1;
mt = mt ^ (n - 3);
ll ans = mt.mat[0][0] * c + mt.mat[0][1] * b + mt.mat[0][2] * a + mt.mat[0][3] * 256
+ mt.mat[0][4] * 64 + mt.mat[0][5] * 16 + mt.mat[0][6] * 4 + mt.mat[0][7];
printf("%lld\n", ans % MOD);
}
}
return 0;
}

hdu5950的更多相关文章

  1. HDU5950 Recursive sequence —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-5950 Recursive sequence Time Limit: 2000/1000 MS (Java/Others)   ...

  2. HDU5950(矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...

  3. 【HDU5950】Recursive sequence(矩阵快速幂)

    BUPT2017 wintertraining(15) #6F 题意 \(f(1)=a,f(2)=b,f(i)=2*(f(i-2)+f(i-1)+i^4)\) 给定n,a,b ,\(N,a,b < ...

  4. HDU5950 Recursive sequence (矩阵快速幂)

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  5. HDU5950 Recursive sequence (矩阵快速幂加速递推) (2016ACM/ICPC亚洲赛区沈阳站 Problem C)

    题目链接:传送门 题目: Recursive sequence Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total ...

  6. HDU5950 Recursive sequence 非线性递推式 矩阵快速幂

    题目传送门 题目描述:给出一个数列的第一项和第二项,计算第n项. 递推式是 f(n)=f(n-1)+2*f(n-2)+n^4. 由于n很大,所以肯定是矩阵快速幂的题目,但是矩阵快速幂只能解决线性的问题 ...

  7. HDU5950【矩阵快速幂】

    主要还是i^4化成一个(i+1)^4没遇到过,还是很基础的一题矩阵快速幂: #include <bits/stdc++.h> using namespace std; typedef lo ...

  8. HDU5950 矩阵快速幂(巧妙的递推)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f[n] = 2*f[n-2] + f[n-1] + n^4 思路:对于递推题而言,如果递 ...

  9. RecursiveSequence(HDU-5950)【矩阵快速幂】

    题目链接: 题意:Si=S(i-1)+2*S(i-2)+i^4,求Sn. 思路:想到了矩阵快速幂,实在没想出来怎么构造矩阵.... 首先构造一个向量vec={a,b,16,8,4,2,1}. 在构造求 ...

随机推荐

  1. STM32学习笔记(三)——外部中断的使用

    开发板芯片:STM32F407ZGT6 硬件连接:PE3-KEY1 一.STM32F4的中断介绍 STM32F4的每个IO都可以作为外部中断输入,很强大的功能吧!以前学习的51只有两个外部中断. ST ...

  2. js继承与闭包(笔记)

    1.一切引用类型都是对象,对象时属性的集合:typeof null === 'object'(例外): 2.对象都是通过函数创建来的,比如var obj = new Object();typeof O ...

  3. 通过 bootloader 向其传输启动参数

    作者:Younger Liu, 本作品采用知识共享署名-非商业性使用-相同方式共享 3.0 未本地化版本许可协议进行许可. Linux提供了一种通过bootloader向其传输启动参数的功能,内核开发 ...

  4. Composer 中国全量镜像(二)

    一.查看当前镜像地址 在命令行输入如下命令,即可查看镜像地址: $ composer config -g repo.packagist {"type":"composer ...

  5. cctype学习

    #include <cctype>(转,归纳很好) 头文件描述: 这是一个拥有许多字符串处理函数声明的头文件,这些函数可以用来对单独字符串进行分类和转换: 其中的函数描述: 这些函数传入一 ...

  6. 整合最优雅SSM框架:SpringMVC + Spring + MyBatis

    我们看招聘信息的时候,经常会看到这一点,需要具备SSH框架的技能:而且在大部分教学课堂中,也会把SSH作为最核心的教学内容. 但是,我们在实际应用中发现,SpringMVC可以完全替代Struts,配 ...

  7. Android ContentProvider详解

    1.概述 ContentProvider以Uri的形式对外提供数据,允许其他应用程序访问或者修改数据.也就是说你可以通过ContentProvider把应用中的数据共享给其他应用访问,其他应用可以通过 ...

  8. Visual Studio Package 插件开发之自动生成实体工具

    前言 这一篇是VS插件基于Visual Studio SDK扩展开发的,可能有些朋友看到[生成实体]心里可能会暗想,T4模板都可以做了.动软不是已经做了么.不就是读库保存文件到指定路径么…… 我希望做 ...

  9. JDFS:一款分布式文件管理实用程序第一篇(线程池、epoll、上传、下载)

    一 前言 截止目前,笔者在博客园上面已经发表了3篇关于网络下载的文章,这三篇博客实现了基于socket的http多线程远程断点下载实用程序.笔者打算在此基础上开发出一款分布式文件管理实用程序,截止目前 ...

  10. eval全局作用域和局部作用域的坑!

    1.eval 是个函数,他可以被赋值给变量,例如   var evalg = eval;  evalg("alert(1)"); 2.eval被赋值时,也会把当前eval所处的变量 ...