何为抽稀

在处理矢量化数据时,记录中往往会有很多重复数据,对进一步数据处理带来诸多不便。多余的数据一方面浪费了较多的存储空间,另一方面造成所要表达的图形不光滑或不符合标准。因此要通过某种规则,在保证矢量曲线形状不变的情况下, 最大限度地减少数据点个数,这个过程称为抽稀。

通俗的讲就是对曲线进行采样简化,即在曲线上取有限个点,将其变为折线,并且能够在一定程度保持原有形状。比较常用的两种抽稀算法是:道格拉斯-普克(Douglas-Peuker)算法和垂距限值法。

道格拉斯-普克(Douglas-Peuker)算法

Douglas-Peuker算法(DP算法)过程如下:

  • 1、连接曲线首尾两点A、B;
  • 2、依次计算曲线上所有点到A、B两点所在曲线的距离;
  • 3、计算最大距离D,如果D小于阈值threshold,则去掉曲线上出A、B外的所有点;如果D大于阈值threshold,则把曲线以最大距离分割成两段;
  • 4、对所有曲线分段重复1-3步骤,知道所有D均小于阈值。即完成抽稀。

这种算法的抽稀精度与阈值有很大关系,阈值越大,简化程度越大,点减少的越多;反之简化程度越低,点保留的越多,形状也越趋于原曲线。

下面是Python代码实现:

# -*- coding: utf-8 -*-
"""
-------------------------------------------------
File Name: DouglasPeuker
Description : 道格拉斯-普克抽稀算法
Author : J_hao
date: 2017/8/16
-------------------------------------------------
Change Activity:
2017/8/16: 道格拉斯-普克抽稀算法
-------------------------------------------------
"""
from __future__ import division from math import sqrt, pow __author__ = 'J_hao' THRESHOLD = 0.0001 # 阈值 def point2LineDistance(point_a, point_b, point_c):
"""
计算点a到点b c所在直线的距离
:param point_a:
:param point_b:
:param point_c:
:return:
"""
# 首先计算b c 所在直线的斜率和截距
if point_b[0] == point_c[0]:
return 9999999
slope = (point_b[1] - point_c[1]) / (point_b[0] - point_c[0])
intercept = point_b[1] - slope * point_b[0] # 计算点a到b c所在直线的距离
distance = abs(slope * point_a[0] - point_a[1] + intercept) / sqrt(1 + pow(slope, 2))
return distance class DouglasPeuker(object):
def __init__(self):
self.threshold = THRESHOLD
self.qualify_list = list()
self.disqualify_list = list() def diluting(self, point_list):
"""
抽稀
:param point_list:二维点列表
:return:
"""
if len(point_list) < 3:
self.qualify_list.extend(point_list[::-1])
else:
# 找到与收尾两点连线距离最大的点
max_distance_index, max_distance = 0, 0
for index, point in enumerate(point_list):
if index in [0, len(point_list) - 1]:
continue
distance = point2LineDistance(point, point_list[0], point_list[-1])
if distance > max_distance:
max_distance_index = index
max_distance = distance # 若最大距离小于阈值,则去掉所有中间点。 反之,则将曲线按最大距离点分割
if max_distance < self.threshold:
self.qualify_list.append(point_list[-1])
self.qualify_list.append(point_list[0])
else:
# 将曲线按最大距离的点分割成两段
sequence_a = point_list[:max_distance_index]
sequence_b = point_list[max_distance_index:] for sequence in [sequence_a, sequence_b]:
if len(sequence) < 3 and sequence == sequence_b:
self.qualify_list.extend(sequence[::-1])
else:
self.disqualify_list.append(sequence) def main(self, point_list):
self.diluting(point_list)
while len(self.disqualify_list) > 0:
self.diluting(self.disqualify_list.pop())
print self.qualify_list
print len(self.qualify_list) if __name__ == '__main__':
d = DouglasPeuker()
d.main([[104.066228, 30.644527], [104.066279, 30.643528], [104.066296, 30.642528], [104.066314, 30.641529],
[104.066332, 30.640529], [104.066383, 30.639530], [104.066400, 30.638530], [104.066451, 30.637531],
[104.066468, 30.636532], [104.066518, 30.635533], [104.066535, 30.634533], [104.066586, 30.633534],
[104.066636, 30.632536], [104.066686, 30.631537], [104.066735, 30.630538], [104.066785, 30.629539],
[104.066802, 30.628539], [104.066820, 30.627540], [104.066871, 30.626541], [104.066888, 30.625541],
[104.066906, 30.624541], [104.066924, 30.623541], [104.066942, 30.622542], [104.066960, 30.621542],
[104.067011, 30.620543], [104.066122, 30.620086], [104.065124, 30.620021], [104.064124, 30.620022],
[104.063124, 30.619990], [104.062125, 30.619958], [104.061125, 30.619926], [104.060126, 30.619894],
[104.059126, 30.619895], [104.058127, 30.619928], [104.057518, 30.620722], [104.057625, 30.621716],
[104.057735, 30.622710], [104.057878, 30.623700], [104.057984, 30.624694], [104.058094, 30.625688],
[104.058204, 30.626682], [104.058315, 30.627676], [104.058425, 30.628670], [104.058502, 30.629667],
[104.058518, 30.630667], [104.058503, 30.631667], [104.058521, 30.632666], [104.057664, 30.633182],
[104.056664, 30.633174], [104.055664, 30.633166], [104.054672, 30.633289], [104.053758, 30.633694],
[104.052852, 30.634118], [104.052623, 30.635091], [104.053145, 30.635945], [104.053675, 30.636793],
[104.054200, 30.637643], [104.054756, 30.638475], [104.055295, 30.639317], [104.055843, 30.640153],
[104.056387, 30.640993], [104.056933, 30.641830], [104.057478, 30.642669], [104.058023, 30.643507],
[104.058595, 30.644327], [104.059152, 30.645158], [104.059663, 30.646018], [104.060171, 30.646879],
[104.061170, 30.646855], [104.062168, 30.646781], [104.063167, 30.646823], [104.064167, 30.646814],
[104.065163, 30.646725], [104.066157, 30.646618], [104.066231, 30.645620], [104.066247, 30.644621], ])

垂距限值法

垂距限值法其实和DP算法原理一样,但是垂距限值不是从整体角度考虑,而是依次扫描每一个点,检查是否符合要求。

算法过程如下:

  • 1、以第二个点开始,计算第二个点到前一个点和后一个点所在直线的距离d;
  • 2、如果d大于阈值,则保留第二个点,计算第三个点到第二个点和第四个点所在直线的距离d;若d小于阈值则舍弃第二个点,计算第三个点到第一个点和第四个点所在直线的距离d;
  • 3、依次类推,直线曲线上倒数第二个点。

下面是Python代码实现:

# -*- coding: utf-8 -*-
"""
-------------------------------------------------
File Name: LimitVerticalDistance
Description : 垂距限值抽稀算法
Author : J_hao
date: 2017/8/17
-------------------------------------------------
Change Activity:
2017/8/17:
-------------------------------------------------
"""
from __future__ import division from math import sqrt, pow __author__ = 'J_hao' THRESHOLD = 0.0001 # 阈值 def point2LineDistance(point_a, point_b, point_c):
"""
计算点a到点b c所在直线的距离
:param point_a:
:param point_b:
:param point_c:
:return:
"""
# 首先计算b c 所在直线的斜率和截距
if point_b[0] == point_c[0]:
return 9999999
slope = (point_b[1] - point_c[1]) / (point_b[0] - point_c[0])
intercept = point_b[1] - slope * point_b[0] # 计算点a到b c所在直线的距离
distance = abs(slope * point_a[0] - point_a[1] + intercept) / sqrt(1 + pow(slope, 2))
return distance class LimitVerticalDistance(object):
def __init__(self):
self.threshold = THRESHOLD
self.qualify_list = list() def diluting(self, point_list):
"""
抽稀
:param point_list:二维点列表
:return:
"""
self.qualify_list.append(point_list[0])
check_index = 1
while check_index < len(point_list) - 1:
distance = point2LineDistance(point_list[check_index],
self.qualify_list[-1],
point_list[check_index + 1]) if distance < self.threshold:
check_index += 1
else:
self.qualify_list.append(point_list[check_index])
check_index += 1
return self.qualify_list if __name__ == '__main__':
l = LimitVerticalDistance()
diluting = l.diluting([[104.066228, 30.644527], [104.066279, 30.643528], [104.066296, 30.642528], [104.066314, 30.641529],
[104.066332, 30.640529], [104.066383, 30.639530], [104.066400, 30.638530], [104.066451, 30.637531],
[104.066468, 30.636532], [104.066518, 30.635533], [104.066535, 30.634533], [104.066586, 30.633534],
[104.066636, 30.632536], [104.066686, 30.631537], [104.066735, 30.630538], [104.066785, 30.629539],
[104.066802, 30.628539], [104.066820, 30.627540], [104.066871, 30.626541], [104.066888, 30.625541],
[104.066906, 30.624541], [104.066924, 30.623541], [104.066942, 30.622542], [104.066960, 30.621542],
[104.067011, 30.620543], [104.066122, 30.620086], [104.065124, 30.620021], [104.064124, 30.620022],
[104.063124, 30.619990], [104.062125, 30.619958], [104.061125, 30.619926], [104.060126, 30.619894],
[104.059126, 30.619895], [104.058127, 30.619928], [104.057518, 30.620722], [104.057625, 30.621716],
[104.057735, 30.622710], [104.057878, 30.623700], [104.057984, 30.624694], [104.058094, 30.625688],
[104.058204, 30.626682], [104.058315, 30.627676], [104.058425, 30.628670], [104.058502, 30.629667],
[104.058518, 30.630667], [104.058503, 30.631667], [104.058521, 30.632666], [104.057664, 30.633182],
[104.056664, 30.633174], [104.055664, 30.633166], [104.054672, 30.633289], [104.053758, 30.633694],
[104.052852, 30.634118], [104.052623, 30.635091], [104.053145, 30.635945], [104.053675, 30.636793],
[104.054200, 30.637643], [104.054756, 30.638475], [104.055295, 30.639317], [104.055843, 30.640153],
[104.056387, 30.640993], [104.056933, 30.641830], [104.057478, 30.642669], [104.058023, 30.643507],
[104.058595, 30.644327], [104.059152, 30.645158], [104.059663, 30.646018], [104.060171, 30.646879],
[104.061170, 30.646855], [104.062168, 30.646781], [104.063167, 30.646823], [104.064167, 30.646814],
[104.065163, 30.646725], [104.066157, 30.646618], [104.066231, 30.645620], [104.066247, 30.644621], ])
print len(diluting)
print(diluting)

最后

其实DP算法和垂距限值法原理一样,DP算法是从整体上考虑一条完整的曲线,实现时较垂距限值法复杂,但垂距限值法可能会在某些情况下导致局部最优。另外在实际使用中发现采用点到另外两点所在直线距离的方法来判断偏离,在曲线弧度比较大的情况下比较准确。如果在曲线弧度比较小,弯曲程度不明显时,这种方法抽稀效果不是很理想,建议使用三点所围成的三角形面积作为判断标准。下面是抽稀效果:



博文地址: http://www.spiderpy.cn/blog/detail/29

曲线点抽稀算法-Python实现的更多相关文章

  1. 模拟退火算法Python编程(2)约束条件的处理

    1.最优化与线性规划 最优化问题的三要素是决策变量.目标函数和约束条件. 线性规划(Linear programming),是研究线性约束条件下线性目标函数的极值问题的优化方法,常用于解决利用现有的资 ...

  2. 模拟退火算法Python编程(3)整数规划问题

    1.整数规划问题 整数规划问题在工业.经济.国防.医疗等各行各业应用十分广泛,是指规划中的变量(全部或部分)限制为整数,属于离散优化问题(Discrete Optimization). 线性规划问题的 ...

  3. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  4. 常见排序算法-Python实现

    常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,, ...

  5. kmp算法python实现

    kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...

  6. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  7. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. python命令行神器Click

    原文: http://www.lengirl.com/code/python-click.html Click 是用Python写的一个第三方模块,用于快速创建命令行.我们知道,Python内置了一个 ...

  2. Vijos 1007 绕钉子的长绳子

    背景 平面上有N个圆柱形的大钉子,半径都为R,所有钉子组成一个凸多边形. 现在你要用一条绳子把这些钉子围起来,绳子直径忽略不计. 描述 求出绳子的长度 格式 输入格式 第1行两个数:整数N(1< ...

  3. AJAX跨域的常见方法

    由于在工作中需要使用AJAX请求其他域名下的请求,但是会出现拒绝访问的情况,这是因为基于安全的考虑,AJAX只能访问本地的资源,而不能跨域访问.比如说你的网站域名是aaa.com,想要通过AJAX请求 ...

  4. git分支的使用

    本文章假定你已经接触了一些git的基本概念和基本的操作知识 这里先贴出关于分支的一些常用命令 git branch /*查看所有分支*/git branch <branch-name> / ...

  5. asp.net Mvc 动态创建Controller

    有这么个需求,Urls如下: http://localhost:52804 http://localhost:52804/home/test http://localhost:52804/test1 ...

  6. Oozie时出现Caused by: com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: Communications link failure?

    不多说,直接上干货! 问题详情 [hadoop@bigdatamaster oozie--cdh5.5.4]$ bin/ooziedb.sh create -sqlfile oozie.sql -ru ...

  7. JavaScript系统学习小结——变量、作用域和内存问题

    趁着写完小论文还未彻底消散的学习氛围,开始着重巩固自己JavaScript的基础知识,为秋招做最基本的准备. 变量:Js的变量可能保存两种不同数据类型的值:基本类型值和引用类型值. 基本类型包括:Un ...

  8. 【JAVASCRIPT】React学习-JSX 语法

    摘要 react 学习包括几个部分: 文本渲染 JSX 语法 组件化思想 数据流 JSX 语法 1. 定义 JSX 是javascript + xml 的合集,我们可以将javascript 与 ht ...

  9. mysql的并发处理机制_上篇

              回来写博客,少年前端时间被django迷了心魄           如果转载,请注明博文来源: www.cnblogs.com/xinysu/   ,版权归 博客园 苏家小萝卜 所 ...

  10. canvas学习总结六:绘制矩形

    在第三章中(canvas学习总结三:绘制路径-线段)我们提高Canvas绘图环境中有些属于立即绘制图形方法,有些绘图方法是基于路径的. 立即绘制图形方法仅有两个strokeRect(),fillRec ...