python基础===八大排序算法的 Python 实现
本文用Python实现了插入排序、希尔排序、冒泡排序、快速排序、直接选择排序、堆排序、归并排序、基数排序。
1、插入排序
描述
插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。
代码实现
def insert_sort(lists):
# 插入排序
count = len(lists)
for i in range(1, count):
key = lists[i]
j = i - 1
while j >= 0:
if lists[j] > key:
lists[j + 1] = lists[j]
lists[j] = key
j -= 1
return lists
2、希尔排序
描述
希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
代码实现
def shell_sort(lists):
# 希尔排序
count = len(lists)
step = 2
group = count / step
while group > 0:
for i in range(0, group):
j = i + group
while j < count:
k = j - group
key = lists[j]
while k >= 0:
if lists[k] > key:
lists[k + group] = lists[k]
lists[k] = key
k -= group
j += group
group /= step
return lists
3、冒泡排序
描述
它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
代码实现
def bubble_sort(lists):
# 冒泡排序
count = len(lists)
for i in range(0, count):
for j in range(i + 1, count):
if lists[i] > lists[j]:
lists[i], lists[j] = lists[j], lists[i]
return lists
4、快速排序
描述
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
代码实现
def quick_sort(lists, left, right):
# 快速排序
if left >= right:
return lists
key = lists[left]
low = left
high = right
while left < right:
while left < right and lists[right] >= key:
right -= 1
lists[left] = lists[right]
while left < right and lists[left] <= key:
left += 1
lists[right] = lists[left]
lists[right] = key
quick_sort(lists, low, left - 1)
quick_sort(lists, left + 1, high)
return lists
5、直接选择排序
描述
基本思想:第1趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;第2趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;以此类推,第i趟在待排序记录r[i] ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。
代码实现
def select_sort(lists):
# 选择排序
count = len(lists)
for i in range(0, count):
min = i
for j in range(i + 1, count):
if lists[min] > lists[j]:
min = j
lists[min], lists[i] = lists[i], lists[min]
return lists
6、堆排序
描述
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。
代码实现
def adjust_heap(lists, i, size):
lchild = 2 * i + 1
rchild = 2 * i + 2
max = i
if i < size / 2:
if lchild < size and lists[lchild] > lists[max]:
max = lchild
if rchild < size and lists[rchild] > lists[max]:
max = rchild
if max != i:
lists[max], lists[i] = lists[i], lists[max]
adjust_heap(lists, max, size) def build_heap(lists, size):
for i in range(0, (size/2))[::-1]:
adjust_heap(lists, i, size) def heap_sort(lists):
size = len(lists)
build_heap(lists, size)
for i in range(0, size)[::-1]:
lists[0], lists[i] = lists[i], lists[0]
adjust_heap(lists, 0, i)
7、归并排序
描述
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。
代码实现
def merge(left, right):
i, j = 0, 0
result = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result += left[i:]
result += right[j:]
return result def merge_sort(lists):
# 归并排序
if len(lists) <= 1:
return lists
num = len(lists) / 2
left = merge_sort(lists[:num])
right = merge_sort(lists[num:])
return merge(left, right)
8、基数排序
描述
基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。
代码实现
import math
def radix_sort(lists, radix=10):
k = int(math.ceil(math.log(max(lists), radix)))
bucket = [[] for i in range(radix)]
for i in range(1, k+1):
for j in lists:
bucket[j/(radix**(i-1)) % (radix**i)].append(j)
del lists[:]
for z in bucket:
lists += z
del z[:]
return lists
python基础===八大排序算法的 Python 实现的更多相关文章
- 八大排序算法的 Python 实现
转载: 八大排序算法的 Python 实现 本文用Python实现了插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 描述 插入排序的基本操作就是将一个 ...
- Python实现八大排序算法(转载)+ 桶排序(原创)
插入排序 核心思想 代码实现 希尔排序 核心思想 代码实现 冒泡排序 核心思想 代码实现 快速排序 核心思想 代码实现 直接选择排序 核心思想 代码实现 堆排序 核心思想 代码实现 归并排序 核心思想 ...
- 【Python】八大排序算法的比较
排序是数据处理比较核心的操作,八大排序算法分别是:直接插入排序.希尔排序.简单选择排序.堆排序.冒泡排序.快速排序.归并排序.基数排序 以下是排序图解: 直接插入排序 思想 直接插入排序是一种最简单的 ...
- 八大排序算法---基于python
本文节选自:http://python.jobbole.com/82270/ 本文用Python实现了插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 ...
- python实现八大排序算法
插入排序 核心思想 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的.个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为 O(n^2).是稳定的排序方法.插入算法 ...
- 八大排序算法的python实现(六)归并排序
代码: #coding:utf-8 #author:徐卜灵 def merge(left,right): i,j = 0,0 result = [] while i < len(left) an ...
- 八大排序算法的python实现(三)冒泡排序
代码: #coding:utf-8 #author:徐卜灵 #交换排序.冒泡排序 L = [1, 3, 2, 32, 5, 4] def Bubble_sort(L): for i in range( ...
- 八大排序算法的python实现(一)直接插入排序
刚参考网上的以及书上的资料把这八大算法又复习了一遍,感悟就是:有些算法原理真的很简单,一看就懂,但实现起来总是有这样那样的问题. 闲言少叙,先贴代码,之后再以自己的理解,以及自己在理解与实现的过程中遇 ...
- 写代码?程序猿?你不能不懂的八大排序算法的Python实现
信息获取后通常需要进行处理,处理后的信息其目的是便于人们的应用.信息处理方法有多种,通常由数据的排序,查找,插入,删除等操作.本章介绍几种简单的数据排序算法和高效的排序算法. 本章主要涉及到的知识点有 ...
随机推荐
- ajax数据请求5(php格式)
ajax数据请求5(php格式): <!DOCTYPE html> <html> <head> <meta charset="UTF-8" ...
- 从 JavaScript 到 TypeScript
本文首发在我的个人博客:http://muyunyun.cn/posts/66a54fc2/ 文中的案例代码已经上传到 TypeScript TypeScript 并不是一个完全新的语言, 它是 Ja ...
- Android开发随手记
本文是作者在Android开发实践中的随手速记,记录一些小问题的解决方案和注意事项,持续更新. 以下是速记内容,若有不严谨的地方,望小伙伴们指出. 1.Module 不生成R文件,可尝试取消对该Mod ...
- 由form表单来说说前后台数据之间的交互
为什么从表单提交说起呢?因为大部分与后台的交互都是在form表单中实现,恰巧我入职一个月来都是在处理与后台交互的数据整合中度过,期间也发现一些小坑,出于喜欢总结,所以才想写这篇小博客. 各位童鞋,可以 ...
- [转]安装PIL时注册表中找不到python2.7
如果在win7x64安装python2.7的时候选择了all user,则安装PIL的时候会显示找不到python. 解决办法:复制下面的代码到一个.py文件并运行: # # script to re ...
- Java 数据类型在实际开发中应用
在前边的博文中,我已经介绍了Java核心的容器IO等,现在我来说一下java中的数据类型.在java中,一切东西皆为对象(这句话意思是java中绝大数情况都用对象),极少数不是对象的,也存在与之对应的 ...
- python基础(4):条件语句与循环语句
今天我们看看条件语句与循环语句. 预习: 1.使用while循环输出1 2 3 4 5 6 8 9 10 2.求1-100的所有数的和 3.输出 1-100 内的所有奇数 4.输出 1-100 内的所 ...
- css中的层叠性及权重的比较
假如同一个标签被多个选择器选中,每个选择器都设置了相同的样式,浏览器中加载时这个样式听谁的? 不同选择器设置的同一个样式,只会选择一个进行加载,不会叠加. 为了解决听谁的问题,引入层叠性的概念. 层叠 ...
- POJ 3398 Perfect Service(树型动态规划,最小支配集)
POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...
- Selenium webdriver定位iframe里面元素两种方法
以东方财富网登录页面为例: 在查找元素过程中,直接通过id或者xpath等找不到元素,查看页面源代码发现元素是属于iframe里,例如: <div class="wrap_login& ...