Linux巩固记录(4) 运行hadoop 2.7.4自带demo程序验证环境
本节主要使用hadoop自带的程序运行demo来确认环境是否正常
1.首先创建一个input.txt文件,里面任意输入些单词,有部分重复单词
2.将input文件拷贝到hdfs
3.执行hadoop程序
4.查看结果
完整执行命令及返回结果看下面的执行拷贝
[root@master ~]#
[root@master ~]# ll /home/input.txt
-rw-r--r--. 1 root root 76 Sep 2 00:55 /home/input.txt
[root@master ~]# cat /home/input.txt
this is a test
hello hadoop hadoop is a xxxxx from changw.xiao@qq.com[root@master ~]#
[root@master ~]#
[root@master ~]# /home/hadoop-2.7.4/bin/hadoop fs -ls /
[root@master ~]#
[root@master ~]# /home/hadoop-2.7.4/bin/hadoop fs -copyFromLocal /home/input.txt /hdfs-input.txt
[root@master ~]# /home/hadoop-2.7.4/bin/hadoop fs -ls /
Found 1 items
-rw-r--r-- 2 root supergroup 76 2017-09-02 00:57 /hdfs-input.txt
[root@master ~]# /home/hadoop-2.7.4/bin/hadoop fs -cat /hdfs-input.txt
this is a test
hello hadoop hadoop is a xxxxx from changw.xiao@qq.com[root@master ~]#
[root@master ~]# /home/hadoop-2.7.4/bin/hadoop jar /home/hadoop-2.7.4/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.4.jar wordcount /hdfs-input.txt /wordcount-result
17/09/02 00:59:28 INFO client.RMProxy: Connecting to ResourceManager at master/192.168.0.80:8032
17/09/02 00:59:29 INFO input.FileInputFormat: Total input paths to process : 1
17/09/02 00:59:29 INFO mapreduce.JobSubmitter: number of splits:1
17/09/02 00:59:30 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1504320356950_0001
17/09/02 00:59:31 INFO impl.YarnClientImpl: Submitted application application_1504320356950_0001
17/09/02 00:59:31 INFO mapreduce.Job: The url to track the job: http://master:8088/proxy/application_1504320356950_0001/
17/09/02 00:59:31 INFO mapreduce.Job: Running job: job_1504320356950_0001
17/09/02 00:59:44 INFO mapreduce.Job: Job job_1504320356950_0001 running in uber mode : false
17/09/02 00:59:44 INFO mapreduce.Job: map 0% reduce 0%
17/09/02 00:59:53 INFO mapreduce.Job: map 100% reduce 0%
17/09/02 01:00:00 INFO mapreduce.Job: map 100% reduce 100%
17/09/02 01:00:01 INFO mapreduce.Job: Job job_1504320356950_0001 completed successfully
17/09/02 01:00:01 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=118
FILE: Number of bytes written=241861
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=174
HDFS: Number of bytes written=76
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=6234
Total time spent by all reduces in occupied slots (ms)=4978
Total time spent by all map tasks (ms)=6234
Total time spent by all reduce tasks (ms)=4978
Total vcore-milliseconds taken by all map tasks=6234
Total vcore-milliseconds taken by all reduce tasks=4978
Total megabyte-milliseconds taken by all map tasks=6383616
Total megabyte-milliseconds taken by all reduce tasks=5097472
Map-Reduce Framework
Map input records=6
Map output records=12
Map output bytes=118
Map output materialized bytes=118
Input split bytes=98
Combine input records=12
Combine output records=9
Reduce input groups=9
Reduce shuffle bytes=118
Reduce input records=9
Reduce output records=9
Spilled Records=18
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=173
CPU time spent (ms)=1380
Physical memory (bytes) snapshot=298201088
Virtual memory (bytes) snapshot=4159512576
Total committed heap usage (bytes)=139833344
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=76
File Output Format Counters
Bytes Written=76
[root@master ~]# /home/hadoop-2.7.4/bin/hadoop fs -ls /
Found 3 items
-rw-r--r-- 2 root supergroup 76 2017-09-02 00:57 /hdfs-input.txt
drwx------ - root supergroup 0 2017-09-02 00:59 /tmp
drwxr-xr-x - root supergroup 0 2017-09-02 00:59 /wordcount-result
[root@master ~]# /home/hadoop-2.7.4/bin/hadoop fs -ls /wordcount-result
Found 2 items
-rw-r--r-- 2 root supergroup 0 2017-09-02 00:59 /wordcount-result/_SUCCESS
-rw-r--r-- 2 root supergroup 76 2017-09-02 00:59 /wordcount-result/part-r-00000
[root@master ~]# /home/hadoop-2.7.4/bin/hadoop fs -cat /wordcount-result/part-r-00000
a 2
changw.xiao@qq.com 1
from 1
hadoop 2
hello 1
is 2
test 1
this 1
xxxxx 1
[root@master ~]#
[root@master ~]#
/home/hadoop-2.7.4/bin/hadoop fs -copyFromLocal /home/input.txt /hdfs-input.txt 也可以用 -put
Linux巩固记录(4) 运行hadoop 2.7.4自带demo程序验证环境的更多相关文章
- Linux巩固记录(9) keepalived+nginx搭建高可用负载分发环境
环境准备(继续服用hadoop节点) slave1 192.168.2.201(CentOs 7) slave2 192.168.2.202(CentOs 7) slave1 和 slave2 上 ...
- Linux巩固记录(3) hadoop 2.7.4 环境搭建
由于要近期使用hadoop等进行相关任务执行,操作linux时候就多了 以前只在linux上配置J2EE项目执行环境,无非配置下jdk,部署tomcat,再通过docker或者jenkins自动部署上 ...
- 在Linux(Centos7)系统上对进行Hadoop分布式配置以及运行Hadoop伪分布式实例
在Linux(Centos7)系统上对进行Hadoop分布式配置以及运行Hadoop伪分布式实例 ...
- linux下在eclipse上运行hadoop自带例子wordcount
启动eclipse:打开windows->open perspective->other->map/reduce 可以看到map/reduce开发视图.设置Hadoop locati ...
- Linux下使用Eclipse开发Hadoop应用程序
在前面一篇文章中介绍了如果在完全分布式的环境下搭建Hadoop0.20.2,现在就再利用这个环境完成开发. 首先用hadoop这个用户登录linux系统(hadoop用户在前面一篇文章中创建的),然后 ...
- hadoop学习记录1 初始hadoop
起因 因为工作需要用到,所以需要学习hadoop,所以记录这篇文章,主要分享自己快速搭建hadoop环境与运行一个demo 搭建环境 网上搭建hadoop环境的例子我看蛮多的.但是我看都比较复杂,要求 ...
- Arch Linux 安装记录
Arch Linux 安装记录 基本上参考wiki上的新手指南,使用arch 2014.6.1 iso安装 设置网络 有线网络 Arch Linux 默认开启DHCP. 静态ip 首先关闭DHCP:s ...
- Hadoop学习笔记3---安装并运行Hadoop
本文环境是在Ubuntu10.04环境下运行的. 在Linux上安装Hadoop之前,首先安装两个程序: 1.JDK1.6(或更高版本).Hadoop是用Java编写的程序,Hadoop编译及MapR ...
- WIN7下运行hadoop程序报:Failed to locate the winutils binary in the hadoop binary path
之前在mac上调试hadoop程序(mac之前配置过hadoop环境)一直都是正常的.因为工作需要,需要在windows上先调试该程序,然后再转到linux下.程序运行的过程中,报Failed to ...
随机推荐
- 技术课堂】如何管理MongoDB数据库?
- 2018.12.17 bzoj3667: Rabin-Miller算法(Pollard-rho)
传送门 Pollard−rhoPollard-rhoPollard−rho板题. 题意简述:给出几个数,让你判断是不是质数,如果不是质数就求出其最大质因子,数的大小为1e181e181e18以内. 先 ...
- c#委托与事件2
首先是一个关机器的一般方法: using System; using System.Collections.Generic; using System.Linq; using System.Text; ...
- 相似性度量 Aprioir算法
第三章 标称:转换成0,1来算,或者用非对称二元属性 二元:x1,x2的分布取00,01,10,11的二元属性个数,列表,算比例.不对称的二元属性就忽略00的属性个数 序数:转换成排位rif,度量:r ...
- java混淆代码的使用
前言:为了保护我们的劳动成果,我们来学习java混淆代码工具的使用. 1.下载retroguard.jar 进入http://www.retrologic.com/retroguard-downloa ...
- BeautifulSoup学习心得(一)
[BeautifulSoup最简介] BeautifulSoup,是Python中的一个第三方库,用于帮助解析Html/XML等内容,便于实现后期的内容提取等方面的工作. BeautifulSoup官 ...
- offsetHeight、scrollHeight、clientHeight、height
对这几项进行彻底研究. 第一步:纯净div,没有margin,padding,border,height设置为200px. 添加滚动条,overflow:scroll,结果div的高度被压缩,因为被滚 ...
- AIX nfs简单说明
AIX 系统 NFS设置 一.NFS守护进程:NFS是通过使用许多用户级的守护进程及远程过程调用等网络应用程序来实现的.而NFS服务器及客户端的守护进程并不完全一致. 1. 作为NFS服务器所需的守护 ...
- Ng第十二课:支持向量机(Support Vector Machines)(一)
1 目录 支持向量机基本上是最好的有监督学习算法了,从logistic回归出发,引出了SVM,揭示模型间的联系,过渡自然. 2 重新审视logistic回归 Logistic回归目的是从特征学习出一个 ...
- C++之const限定符(顶层const,底层const)
作者:tongqingliu 转载请注明出处:http://www.cnblogs.com/liutongqing/p/7050815.html C++之const限定符(顶层const,底层cons ...