【BZOJ4870】组合数问题(动态规划,矩阵快速幂)
【BZOJ4870】组合数问题(动态规划,矩阵快速幂)
题面
题解
显然直接算是没法做的。但是要求的东西的和就是从\(nk\)个物品中选出模\(k\)意义下恰好\(r\)个物品的方案数。\(n\)的范围这么大,往快速幂的方面靠。设\(f[i][j]\)表示从前\(i\)个物品中选了模\(k\)意义下\(j\)个物品的方案数,转移显然,快速幂即可。
时间复杂度\(O(k^3logn)\)。
稍微注意一个细节,\(k=1\)的时候,矩阵的唯一一项不是\(1\),而是\(2\)。所以在构造矩阵的时候不要直接赋值,要加上去。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std;
#define ll long long
int n,MOD,K,r;
struct Matrix
{
int s[55][55];
void clear(){memset(s,0,sizeof(s));}
void init(){clear();for(int i=0;i<K;++i)s[i][i]=1;}
int*operator[](int x){return s[x];}
}A;
Matrix operator*(Matrix a,Matrix b)
{
Matrix ret;ret.clear();
for(int i=0;i<K;++i)
for(int j=0;j<K;++j)
for(int k=0;k<K;++k)
ret[i][j]=(ret[i][j]+1ll*a[i][k]*b[k][j])%MOD;
return ret;
}
Matrix fpow(Matrix a,ll b)
{
Matrix s;s.init();
while(b){if(b&1)s=s*a;a=a*a;b>>=1;}
return s;
}
int main()
{
scanf("%d%d%d%d",&n,&MOD,&K,&r);
A.init();A[K-1][0]+=1;
for(int i=1;i<K;++i)A[i-1][i]+=1;
A=fpow(A,1ll*K*n);
printf("%d\n",A[0][r]);
return 0;
}
【BZOJ4870】组合数问题(动态规划,矩阵快速幂)的更多相关文章
- poj 3744 Scout (Another) YYF I - 概率与期望 - 动态规划 - 矩阵快速幂
(Another) YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into th ...
- hdu 2604 Queuing(动态规划—>矩阵快速幂,更通用的模版)
题目 最早不会写,看了网上的分析,然后终于想明白了矩阵是怎么出来的了,哈哈哈哈. 因为边上的项目排列顺序不一样,所以写出来的矩阵形式也可能不一样,但是都是可以的 //愚钝的我不会写这题,然后百度了,照 ...
- Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)
Problem Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...
- BZOJ2553 Beijing2011禁忌(AC自动机+动态规划+矩阵快速幂+概率期望)
考虑对一个串如何分割能取得最大值.那么这是一个经典的线段覆盖问题,显然每次取右端点尽量靠前的串.于是可以把串放在AC自动机上跑,找到一个合法串后就记录并跳到根. 然后考虑dp.设f[i][j]表示前i ...
- BZOJ5298 CQOI2018交错序列(动态规划+矩阵快速幂)
显然答案为Σkb·(n-k)a·C(n-k+1,k).并且可以发现ΣC(n-k,k)=fibn.但这实际上没有任何卵用. 纯组合看起来不太行得通,换个思路,考虑一个显然的dp,即设f[i][j][0/ ...
- BZOJ4887 Tjoi2017可乐(动态规划+矩阵快速幂)
设f[i][j]为第i天到达j号城市的方案数,转移显然,答案即为每天在每个点的方案数之和.矩乘一发即可. #include<iostream> #include<cstdio> ...
- 【BZOJ2004】公交线路(动态规划,状态压缩,矩阵快速幂)
[BZOJ2004]公交线路(动态规划,状态压缩,矩阵快速幂) 题面 BZOJ 题解 看到\(k,p\)这么小 不难想到状态压缩 看到\(n\)这么大,不难想到矩阵快速幂 那么,我们来考虑朴素的\(d ...
- 【BZOJ1009】GT考试(KMP算法,矩阵快速幂,动态规划)
[BZOJ1009]GT考试(KMP算法,矩阵快速幂,动态规划) 题面 BZOJ 题解 看到这个题目 化简一下题意 长度为\(n\)的,由\(0-9\)组成的字符串中 不含串\(s\)的串的数量有几个 ...
- 【BZOJ4000】[TJOI2015]棋盘(矩阵快速幂,动态规划)
[BZOJ4000][TJOI2015]棋盘(矩阵快速幂,动态规划) 题面 BZOJ 洛谷 题解 发现所有的东西都是从\(0\)开始编号的,所以状压只需要压一行就行了. 然后就可以随意矩乘了. #in ...
随机推荐
- FFmpeg编程学习笔记二:音频重採样
ffmpeg实现音频重採样的核心函数swr_convert功能很强大,但是ffmpeg文档对它的凝视太过简单.在应用中往往会出这样那样的问题,事实上在读取数据->重採样->编码数据的循环中 ...
- 解决Ubuntu14.04安装Chrome浏览器打不开的问题
1.安装Chrome浏览器 wget http://www.linuxidc.com/files/repo/google-chrome.list -P /etc/apt/sources.list.d/ ...
- 复选框、单选框 jquery判断是否选中Demo
<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="eachcheckbox.a ...
- EZ 2018 01 14 2018noip第四次膜你赛
这次惨烈的炸了个精光(只有20),然后对我的OI想法造成了巨大的转折. (以上有点作,其实我只是再也不用vector存图了而已(用邻接表)) 难度很不均匀,而且题型很狗(还有结论题???) T1 坑人 ...
- 理解 NgModelController 中相关方法和属性
1. 理解$formatters和$parsers方法 angular的双向绑定可以实现view和model中的值自动同步,但有时候我们不想让用户输入的(view值)和发送给后台的(model值)并不 ...
- HDU 6333 Harvest of Apples (分块、数论)
题目连接:Harvest of Apples 题意:给出一个n和m,求C(0,n)+C(1,n)+.....+C(m,n).(样例组数为1e5) 题解:首先先把阶乘和逆元预处理出来,这样就可O(1)将 ...
- L017-linux系统定时任务crond入门小节
L017-linux系统定时任务crond入门小节 oh my god!how old are you? 怎么老是你?没错,我又来了,哈哈哈,今天是我的生日呢,在这么重要的日子里,必须要更一篇学习小节 ...
- 2、Docker镜像和镜像管理
一.镜像介绍 1.定义 一个只读层被称为镜像,一个镜像是永久不会变的. 由于 Docker 使用一个统一文件系统,Docker 进程认为整个文件系统是以读写方式挂载的. 但是所有的变更都发生顶层的可写 ...
- python图像处理 模式转化简单总结
图像处理库PIL有九种不同模式:1,L,P,RGB,RGBA,CMYK,YCbCr,I,F 1.模式“1” 模式“1”为二值图像,非黑即白.但是它每个像素用8个bit表示,0表示黑,255表示白. 2 ...
- EOS开发基础之五:使用cleos命令行客户端操作EOS——智能合约之Exchange
先回答一下上一节中留下的问题,为什么我就看不到eosio这个账户中的钱呢?我明明为它create了很多token啊. 对,你是create了,但是没有issue啊.create了1000000000 ...