cvpr2015总结
cvpr所有文章
http://cs.stanford.edu/people/karpathy/cvpr2015papers/
CNN
Hypercolumns for Object Segmentation and Fine-Grained Localization
Bharath Hariharan, Pablo Arbeláez, Ross Girshick, Jitendra Malik
Improving Object Detection With Deep Convolutional Networks via Bayesian Optimization and Structured Prediction
Yuting Zhang, Kihyuk Sohn, Ruben Villegas, Gang Pan, Honglak Lee
Going Deeper With Convolutions
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
Deep Neural Networks Are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Nguyen, Jason Yosinski, Jeff Clune
Deformable Part Models are Convolutional Neural Networks
Ross Girshick, Forrest Iandola, Trevor Darrell, Jitendra Malik
Efficient Object Localization Using Convolutional Networks
Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, Christoph Bregler
End-to-End Integration of a Convolution Network, Deformable Parts Model and Non-Maximum Suppression
Li Wan, David Eigen, Rob Fergus
Computing the Stereo Matching Cost With a Convolutional Neural Network
Jure Žbontar, Yann LeCun
Efficient and Accurate Approximations of Nonlinear Convolutional Networks
Xiangyu Zhang, Jianhua Zou, Xiang Ming, Kaiming He, Jian Sun
Deep Visual-Semantic Alignments for Generating Image Descriptions
Andrej Karpathy, Li Fei-Fei
Long-Term Recurrent Convolutional Networks for Visual Recognition and Description
Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, Trevor Darrell
Fully Convolutional Networks for Semantic Segmentation
Jonathan Long, Evan Shelhamer, Trevor Darrell
Deep Multiple Instance Learning for Image Classification and Auto-Annotation
Jiajun Wu, Yinan Yu, Chang Huang, Kai Yu
Understanding Deep Image Representations by Inverting Them
Aravindh Mahendran, Andrea Vedaldi
Convolutional Neural Networks at Constrained Time Cost
Kaiming He, Jian Sun
3D
DynamicFusion: Reconstruction and Tracking of Non-Rigid Scenes in Real-Time
Richard A. Newcombe, Dieter Fox, Steven M. Seitz
3D Scanning Deformable Objects With a Single RGBD Sensor
Mingsong Dou, Jonathan Taylor, Henry Fuchs, Andrew Fitzgibbon, Shahram Izadi
Direction Matters: Depth Estimation With a Surface Normal Classifier
Christian Häne, Ľubor Ladický, Marc Pollefeys
Designing Deep Networks for Surface Normal Estimation
Xiaolong Wang, David Fouhey, Abhinav Gupta
PAIGE: PAirwise Image Geometry Encoding for Improved Efficiency in Structure-From-Motion
Johannes L. Schönberger, Alexander C. Berg, Jan-Michael Frahm
Category-Specific Object Reconstruction From a Single Image
Abhishek Kar, Shubham Tulsiani, João Carreira, Jitendra Malik
Computing the Stereo Matching Cost With a Convolutional Neural Network
Jure Žbontar, Yann LeCun
Robust Large Scale Monocular Visual SLAM
Guillaume Bourmaud, Rémi Mégret
Reconstructing the World* in Six Days *(As Captured by the Yahoo 100 Million Image Dataset)
Jared Heinly, Johannes L. Schönberger, Enrique Dunn, Jan-Michael Frahm
Inferring 3D Layout of Building Facades From a Single Image
Jiyan Pan, Martial Hebert, Takeo Kanade
Exact Bias Correction and Covariance Estimation for Stereo Vision
Charles Freundlich, Michael Zavlanos, Philippos Mordohai
Deep Convolutional Neural Fields for Depth Estimation From a Single Image
Fayao Liu, Chunhua Shen, Guosheng Lin
Hash
Web Scale Photo Hash Clustering on A Single Machine
Yunchao Gong, Marcin Pawlowski, Fei Yang, Louis Brandy, Lubomir Bourdev, Rob Fergus
Detecion
Expanding Object Detector's Horizon: Incremental Learning Framework for Object Detection in Videos
Alina Kuznetsova, Sung Ju Hwang, Bodo Rosenhahn, Leonid Sigal
Deformable Part Models are Convolutional Neural Networks
Ross Girshick, Forrest Iandola, Trevor Darrell, Jitendra Malik
Efficient Object Localization Using Convolutional Networks
Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, Christoph Bregler
End-to-End Integration of a Convolution Network, Deformable Parts Model and Non-Maximum Suppression
Li Wan, David Eigen, Rob Fergus
Unsupervised Object Discovery and Localization in the Wild: Part-Based Matching With Bottom-Up Region Proposals
Minsu Cho, Suha Kwak, Cordelia Schmid, Jean Ponce
Model Recommendation: Generating Object Detectors From Few Samples
Yu-Xiong Wang, Martial Hebert
Learning Scene-Specific Pedestrian Detectors Without Real Data
Hironori Hattori, Vishnu Naresh Boddeti, Kris M. Kitani, Takeo Kanade
Classification
What do 15,000 Object Categories Tell Us About Classifying and Localizing Actions?
Mihir Jain, Jan C. van Gemert, Cees G. M. Snoek
From Categories to Subcategories: Large-Scale Image Classification With Partial Class Label Refinement
Marko Ristin, Juergen Gall, Matthieu Guillaumin, Luc Van Gool
Global Refinement of Random Forest
Shaoqing Ren, Xudong Cao, Yichen Wei, Jian Sun
A Novel Locally Linear KNN Model for Visual Recognition
Qingfeng Liu, Chengjun Liu
Learning From Massive Noisy Labeled Data for Image Classification
Tong Xiao, Tian Xia, Yi Yang, Chang Huang, Xiaogang Wang
Visual Recognition by Learning From Web Data: A Weakly Supervised Domain Generalization Approach
Li Niu, Wen Li, Dong Xu
Optimization&Learning
Graph-Based Simplex Method for Pairwise Energy Minimization With Binary Variables
Daniel Průša
Maximum Persistency via Iterative Relaxed Inference With Graphical Models
Alexander Shekhovtsov, Paul Swoboda, Bogdan Savchynskyy
Efficient Parallel Optimization for Potts Energy With Hierarchical Fusion
Olga Veksler
Global Supervised Descent Method
Xuehan Xiong, Fernando De la Torre
A Multi-Plane Block-Coordinate Frank-Wolfe Algorithm for Training Structural SVMs With a Costly Max-Oracle
Neel Shah, Vladimir Kolmogorov, Christoph H. Lampert
Three Viewpoints Toward Exemplar SVM
Takumi Kobayashi
Iteratively Reweighted Graph Cut for Multi-Label MRFs With Non-Convex Priors
Thalaiyasingam Ajanthan, Richard Hartley, Mathieu Salzmann, Hongdong Li
Segmentation&Superpixel
Superpixel Segmentation Using Linear Spectral Clustering
Zhengqin Li, Jiansheng Chen
Real-Time Coarse-to-Fine Topologically Preserving Segmentation
Jian Yao, Marko Boben, Sanja Fidler, Raquel Urtasun
Learning to Segment Moving Objects in Videos
Katerina Fragkiadaki, Pablo Arbeláez, Panna Felsen, Jitendra Malik
Face
Web-Scale Training for Face Identification
Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, Lior Wolf
Low-level
Image Partitioning Into Convex Polygons
Liuyun Duan, Florent Lafarge
Fast and Accurate Image Upscaling With Super-Resolution Forests
Samuel Schulter, Christian Leistner, Horst Bischof
L0TV: A New Method for Image Restoration in the Presence of Impulse Noise
Ganzhao Yuan, Bernard Ghanem
Robust Image Filtering Using Joint Static and Dynamic Guidance
Bumsub Ham, Minsu Cho, Jean Ponce
Dataset
A Large-Scale Car Dataset for Fine-Grained Categorization and Verification
Linjie Yang, Ping Luo, Chen Change Loy, Xiaoou Tang
cvpr2015总结的更多相关文章
- 论文阅读(Xiang Bai——【CVPR2015】Symmetry-Based Text Line Detection in Natural Scenes)
Xiang Bai--[CVPR2015]Symmetry-Based Text Line Detection in Natural Scenes 目录 作者和相关链接 方法概括 创新点和贡献 方法细 ...
- CVPR2015一些文章整理
简单看了一部分CVPR2015的文章.整理了一下. 当中我决定把精彩的文章加粗. 主要是认为有些文章仅仅读了一遍,没有发现非常多非常有道理的point(虽然我承认他们的工作都花了非常大的功夫.可是没有 ...
- CVPR2015深度学习回顾
原文链接:http://www.csdn.net/article/2015-08-06/2825395 本文做了少量修改,仅作转载存贮,如有疑问或版权问题,请访问原作者或告知本人. CVPR可谓计算机 ...
- 深度学习2015年文章整理(CVPR2015)
国内外从事计算机视觉和图像处理相关领域的著名学者都以在三大顶级会议(ICCV.CVPR和ECCV)上发表论文为荣,其影响力远胜于一般SCI期刊论文.这三大顶级学术会议论文也引领着未来的研究趋势.CVP ...
- CVPR2015文章下载
http://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Liu_Real-Time_Part-Based_Visual_2015_ ...
- [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...
- 论文阅读笔记五十五:DenseBox: Unifying Landmark Localization with End to End Object Detection(CVPR2015)
论文原址:https://arxiv.org/abs/1509.04874 github:https://github.com/CaptainEven/DenseBox 摘要 本文先提出了一个问题:如 ...
- 论文阅读笔记二十八:You Only Look Once: Unified,Real-Time Object Detection(YOLO v1 CVPR2015)
论文源址:https://arxiv.org/abs/1506.02640 tensorflow代码:https://github.com/nilboy/tensorflow-yolo 摘要 该文提出 ...
- 论文阅读笔记十四:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation(CVPR2015)
论文链接:https://arxiv.org/abs/1506.04924 摘要 该文提出了基于混合标签的半监督分割网络.与当前基于区域分类的单任务的分割方法不同,Decoupled 网络将分割与分类 ...
- 论文阅读笔记六:FCN:Fully Convolutional Networks for Semantic Segmentation(CVPR2015)
今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn ...
随机推荐
- Java 中转换为String类型的四种方法
1. 使用 String 的构造方法,用于 byte[], char[], StringBuffer, StringBuilder 类型 2. 使用 String 的静态方法 valueOf() 推荐 ...
- Laravel 利用 observer 类基于状态属性,对进行删除和修改的控制
1 我们知道 Observer 类可以监听模型类的相关事件 1.1 creating, created, updating, updated, saving, saved, deleting, del ...
- How to ignore files and directories in subversion?
Step 1 Copy the files and directories to other place. Step 2 Delete the files and directories. Step ...
- React中使用CSS
第一种: 在组件中直接使用style 不需要组件从外部引入css文件,直接在组件中书写. import React, { Component } from "react"; con ...
- Python 中Lambda 表达式 实例解析
Lambda 表达式 lambda表达式是一种简洁格式的函数.该表达式不是正常的函数结构,而是属于表达式的类型.而且它可以调用其它函数. 1.基本格式: lambda 参数,参数...:函数功能代码 ...
- 过河卒(NOIP2002)
题目链接:过河卒 直接模拟?会T掉60分. 所以我们可以采用递推,怎么想到的? 因为卒子只能向下或向右走,所以走到一个点的方法数,等于走到它上面点的方法数加上走到它左边点的方法数,这样就可以地推了. ...
- 再读c++primer plus 003
1.如果函数返回一个结构而不是一个指向结构的引用,将把整个结构复制到一个临时位置,再将这个拷贝复制给dup.但在返回值为引用时,将直接复制给变量,其效率更高. 2.返回引用时最重要的一点是,应避免返回 ...
- Sprign中常用注解
1.@Component 创建类对象,相当于配置<bean/> 2.@Service 与 @Component功能相同 2.1写在ServiceImpl类上 (建议在ServiceImpl ...
- 【转】Linux 如何通过命令仅获取IP地址
一同事的朋友正在参加笔试,遇到这么一个问题让他帮忙解决,结果同事又找到我帮他搞定.真是感慨:通讯发达在某些方面来说,真不知是不是好事啊!题目大致如下所示,一般我们使用ifconfig查看网卡信息,请问 ...
- ORA-38301:can not perform DDL/DML over objects in Recycle Bin
一个智障操作,drop一个用户,下面的东西比较多,删得比较慢,然后shell突然关了. 就导致了,删不掉,又不能创建新的用户.出版本要得比较急,就先创建新的用户测试去了. 今天要弄个东西,又想起这个事 ...