cvpr2015总结
cvpr所有文章
http://cs.stanford.edu/people/karpathy/cvpr2015papers/
CNN
Hypercolumns for Object Segmentation and Fine-Grained Localization
Bharath Hariharan, Pablo Arbeláez, Ross Girshick, Jitendra Malik
Improving Object Detection With Deep Convolutional Networks via Bayesian Optimization and Structured Prediction
Yuting Zhang, Kihyuk Sohn, Ruben Villegas, Gang Pan, Honglak Lee
Going Deeper With Convolutions
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
Deep Neural Networks Are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Nguyen, Jason Yosinski, Jeff Clune
Deformable Part Models are Convolutional Neural Networks
Ross Girshick, Forrest Iandola, Trevor Darrell, Jitendra Malik
Efficient Object Localization Using Convolutional Networks
Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, Christoph Bregler
End-to-End Integration of a Convolution Network, Deformable Parts Model and Non-Maximum Suppression
Li Wan, David Eigen, Rob Fergus
Computing the Stereo Matching Cost With a Convolutional Neural Network
Jure Žbontar, Yann LeCun
Efficient and Accurate Approximations of Nonlinear Convolutional Networks
Xiangyu Zhang, Jianhua Zou, Xiang Ming, Kaiming He, Jian Sun
Deep Visual-Semantic Alignments for Generating Image Descriptions
Andrej Karpathy, Li Fei-Fei
Long-Term Recurrent Convolutional Networks for Visual Recognition and Description
Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, Trevor Darrell
Fully Convolutional Networks for Semantic Segmentation
Jonathan Long, Evan Shelhamer, Trevor Darrell
Deep Multiple Instance Learning for Image Classification and Auto-Annotation
Jiajun Wu, Yinan Yu, Chang Huang, Kai Yu
Understanding Deep Image Representations by Inverting Them
Aravindh Mahendran, Andrea Vedaldi
Convolutional Neural Networks at Constrained Time Cost
Kaiming He, Jian Sun
3D
DynamicFusion: Reconstruction and Tracking of Non-Rigid Scenes in Real-Time
Richard A. Newcombe, Dieter Fox, Steven M. Seitz
3D Scanning Deformable Objects With a Single RGBD Sensor
Mingsong Dou, Jonathan Taylor, Henry Fuchs, Andrew Fitzgibbon, Shahram Izadi
Direction Matters: Depth Estimation With a Surface Normal Classifier
Christian Häne, Ľubor Ladický, Marc Pollefeys
Designing Deep Networks for Surface Normal Estimation
Xiaolong Wang, David Fouhey, Abhinav Gupta
PAIGE: PAirwise Image Geometry Encoding for Improved Efficiency in Structure-From-Motion
Johannes L. Schönberger, Alexander C. Berg, Jan-Michael Frahm
Category-Specific Object Reconstruction From a Single Image
Abhishek Kar, Shubham Tulsiani, João Carreira, Jitendra Malik
Computing the Stereo Matching Cost With a Convolutional Neural Network
Jure Žbontar, Yann LeCun
Robust Large Scale Monocular Visual SLAM
Guillaume Bourmaud, Rémi Mégret
Reconstructing the World* in Six Days *(As Captured by the Yahoo 100 Million Image Dataset)
Jared Heinly, Johannes L. Schönberger, Enrique Dunn, Jan-Michael Frahm
Inferring 3D Layout of Building Facades From a Single Image
Jiyan Pan, Martial Hebert, Takeo Kanade
Exact Bias Correction and Covariance Estimation for Stereo Vision
Charles Freundlich, Michael Zavlanos, Philippos Mordohai
Deep Convolutional Neural Fields for Depth Estimation From a Single Image
Fayao Liu, Chunhua Shen, Guosheng Lin
Hash
Web Scale Photo Hash Clustering on A Single Machine
Yunchao Gong, Marcin Pawlowski, Fei Yang, Louis Brandy, Lubomir Bourdev, Rob Fergus
Detecion
Expanding Object Detector's Horizon: Incremental Learning Framework for Object Detection in Videos
Alina Kuznetsova, Sung Ju Hwang, Bodo Rosenhahn, Leonid Sigal
Deformable Part Models are Convolutional Neural Networks
Ross Girshick, Forrest Iandola, Trevor Darrell, Jitendra Malik
Efficient Object Localization Using Convolutional Networks
Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, Christoph Bregler
End-to-End Integration of a Convolution Network, Deformable Parts Model and Non-Maximum Suppression
Li Wan, David Eigen, Rob Fergus
Unsupervised Object Discovery and Localization in the Wild: Part-Based Matching With Bottom-Up Region Proposals
Minsu Cho, Suha Kwak, Cordelia Schmid, Jean Ponce
Model Recommendation: Generating Object Detectors From Few Samples
Yu-Xiong Wang, Martial Hebert
Learning Scene-Specific Pedestrian Detectors Without Real Data
Hironori Hattori, Vishnu Naresh Boddeti, Kris M. Kitani, Takeo Kanade
Classification
What do 15,000 Object Categories Tell Us About Classifying and Localizing Actions?
Mihir Jain, Jan C. van Gemert, Cees G. M. Snoek
From Categories to Subcategories: Large-Scale Image Classification With Partial Class Label Refinement
Marko Ristin, Juergen Gall, Matthieu Guillaumin, Luc Van Gool
Global Refinement of Random Forest
Shaoqing Ren, Xudong Cao, Yichen Wei, Jian Sun
A Novel Locally Linear KNN Model for Visual Recognition
Qingfeng Liu, Chengjun Liu
Learning From Massive Noisy Labeled Data for Image Classification
Tong Xiao, Tian Xia, Yi Yang, Chang Huang, Xiaogang Wang
Visual Recognition by Learning From Web Data: A Weakly Supervised Domain Generalization Approach
Li Niu, Wen Li, Dong Xu
Optimization&Learning
Graph-Based Simplex Method for Pairwise Energy Minimization With Binary Variables
Daniel Průša
Maximum Persistency via Iterative Relaxed Inference With Graphical Models
Alexander Shekhovtsov, Paul Swoboda, Bogdan Savchynskyy
Efficient Parallel Optimization for Potts Energy With Hierarchical Fusion
Olga Veksler
Global Supervised Descent Method
Xuehan Xiong, Fernando De la Torre
A Multi-Plane Block-Coordinate Frank-Wolfe Algorithm for Training Structural SVMs With a Costly Max-Oracle
Neel Shah, Vladimir Kolmogorov, Christoph H. Lampert
Three Viewpoints Toward Exemplar SVM
Takumi Kobayashi
Iteratively Reweighted Graph Cut for Multi-Label MRFs With Non-Convex Priors
Thalaiyasingam Ajanthan, Richard Hartley, Mathieu Salzmann, Hongdong Li
Segmentation&Superpixel
Superpixel Segmentation Using Linear Spectral Clustering
Zhengqin Li, Jiansheng Chen
Real-Time Coarse-to-Fine Topologically Preserving Segmentation
Jian Yao, Marko Boben, Sanja Fidler, Raquel Urtasun
Learning to Segment Moving Objects in Videos
Katerina Fragkiadaki, Pablo Arbeláez, Panna Felsen, Jitendra Malik
Face
Web-Scale Training for Face Identification
Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, Lior Wolf
Low-level
Image Partitioning Into Convex Polygons
Liuyun Duan, Florent Lafarge
Fast and Accurate Image Upscaling With Super-Resolution Forests
Samuel Schulter, Christian Leistner, Horst Bischof
L0TV: A New Method for Image Restoration in the Presence of Impulse Noise
Ganzhao Yuan, Bernard Ghanem
Robust Image Filtering Using Joint Static and Dynamic Guidance
Bumsub Ham, Minsu Cho, Jean Ponce
Dataset
A Large-Scale Car Dataset for Fine-Grained Categorization and Verification
Linjie Yang, Ping Luo, Chen Change Loy, Xiaoou Tang
cvpr2015总结的更多相关文章
- 论文阅读(Xiang Bai——【CVPR2015】Symmetry-Based Text Line Detection in Natural Scenes)
Xiang Bai--[CVPR2015]Symmetry-Based Text Line Detection in Natural Scenes 目录 作者和相关链接 方法概括 创新点和贡献 方法细 ...
- CVPR2015一些文章整理
简单看了一部分CVPR2015的文章.整理了一下. 当中我决定把精彩的文章加粗. 主要是认为有些文章仅仅读了一遍,没有发现非常多非常有道理的point(虽然我承认他们的工作都花了非常大的功夫.可是没有 ...
- CVPR2015深度学习回顾
原文链接:http://www.csdn.net/article/2015-08-06/2825395 本文做了少量修改,仅作转载存贮,如有疑问或版权问题,请访问原作者或告知本人. CVPR可谓计算机 ...
- 深度学习2015年文章整理(CVPR2015)
国内外从事计算机视觉和图像处理相关领域的著名学者都以在三大顶级会议(ICCV.CVPR和ECCV)上发表论文为荣,其影响力远胜于一般SCI期刊论文.这三大顶级学术会议论文也引领着未来的研究趋势.CVP ...
- CVPR2015文章下载
http://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Liu_Real-Time_Part-Based_Visual_2015_ ...
- [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...
- 论文阅读笔记五十五:DenseBox: Unifying Landmark Localization with End to End Object Detection(CVPR2015)
论文原址:https://arxiv.org/abs/1509.04874 github:https://github.com/CaptainEven/DenseBox 摘要 本文先提出了一个问题:如 ...
- 论文阅读笔记二十八:You Only Look Once: Unified,Real-Time Object Detection(YOLO v1 CVPR2015)
论文源址:https://arxiv.org/abs/1506.02640 tensorflow代码:https://github.com/nilboy/tensorflow-yolo 摘要 该文提出 ...
- 论文阅读笔记十四:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation(CVPR2015)
论文链接:https://arxiv.org/abs/1506.04924 摘要 该文提出了基于混合标签的半监督分割网络.与当前基于区域分类的单任务的分割方法不同,Decoupled 网络将分割与分类 ...
- 论文阅读笔记六:FCN:Fully Convolutional Networks for Semantic Segmentation(CVPR2015)
今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn ...
随机推荐
- Servlet封装类
Servlet 提供了四个封装类: public class ServletRequestWrapper extends java.lang.Object implements ServletRequ ...
- [AI]神经网络章2 神经网络中反向传播与梯度下降的基本概念
反向传播和梯度下降这两个词,第一眼看上去似懂非懂,不明觉厉.这两个概念是整个神经网络中的重要组成部分,是和误差函数/损失函数的概念分不开的. 神经网络训练的最基本的思想就是:先“蒙”一个结果,我们叫预 ...
- vue脚手架搭建的具体步骤
1.全局安装cli npm install -g vue-cli 在全局安装vue的命令行工具 2.初始化项目 vue init webpack my-project 初始化一个基于webpack ...
- 事务ACID如何定义,事务隔离性解决的问题
挚享科技 2018.4.8 事务的四个特性: 1. 原子性: 同一个事务的多个操作,要么都成功,要么全部失败回滚. 2. 一致性: 事务必须确保数据库从一个一致性状态变换为另一个一致性状态. 其实就是 ...
- MongoDB相关记录
win10中zip安装 下载地址:http://dl.mongodb.org/dl/win32/x86_64 首先解压至某文件夹, 使用管理员权限打开cmd或者powershell, 进入指定目录中的 ...
- 关于js的function.来自百度知道的回答,学习了.
在js中,创建一个函数对象的语法是var myFunction = new Function(arg1,…,agrN, body);其中,该函数对象的N个参数放在 函数主体参数body的前面,即函数主 ...
- Likecloud—吃、吃、吃(P1508)
题目链接:Likecloud-吃.吃.吃 这题的状态非常的自然. 就是ans[i][j]表示从(i,j)出发,能得到的最大能量值. 那么对应每一个点,我们只要选出他能到达的点的最大值,加上自己就行了. ...
- HDU 6185(打表代码
/** @xigua */ #include <cstdio> #include <cmath> #include <iostream> #include < ...
- Tarjan 割点,桥
/* ggg ggg ggggggg ggggggg ggggggggggggggggggg ggggggggggggggg ggggggggggg ggggggg ggg g */ /* gyt L ...
- IDEA导入MySQL包
点击[Project Structure] 点击[Modules] 在点击下面的界面 找到自己下载的MySQL包就OK了