Space Ant
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 3967   Accepted: 2489

Description

The most exciting space discovery occurred at the end of the 20th century. In 1999, scientists traced down an ant-like creature in the planet Y1999 and called it M11. It has only one eye on the left side of its head and just three feet all on the right side of its body and suffers from three walking limitations: 
  1. It can not turn right due to its special body structure.
  2. It leaves a red path while walking.
  3. It hates to pass over a previously red colored path, and never does that.

The pictures transmitted by the Discovery space ship depicts that plants in the Y1999 grow in special points on the planet. Analysis of several thousands of the pictures have resulted in discovering a magic coordinate system governing the grow points of the plants. In this coordinate system with x and y axes, no two plants share the same x or y
An M11 needs to eat exactly one plant in each day to stay alive. When it eats one plant, it remains there for the rest of the day with no move. Next day, it looks for another plant to go there and eat it. If it can not reach any other plant it dies by the end of the day. Notice that it can reach a plant in any distance. 
The problem is to find a path for an M11 to let it live longest. 
Input is a set of (x, y) coordinates of plants. Suppose A with the coordinates (xA, yA) is the plant with the least y-coordinate. M11 starts from point (0,yA) heading towards plant A. Notice that the solution path should not cross itself and all of the turns should be counter-clockwise. Also note that the solution may visit more than two plants located on a same straight line. 

Input

The first line of the input is M, the number of test cases to be solved (1 <= M <= 10). For each test case, the first line is N, the number of plants in that test case (1 <= N <= 50), followed by N lines for each plant data. Each plant data consists of three integers: the first number is the unique plant index (1..N), followed by two positive integers x and y representing the coordinates of the plant. Plants are sorted by the increasing order on their indices in the input file. Suppose that the values of coordinates are at most 100.

Output

Output should have one separate line for the solution of each test case. A solution is the number of plants on the solution path, followed by the indices of visiting plants in the path in the order of their visits.

Sample Input

2
10
1 4 5
2 9 8
3 5 9
4 1 7
5 3 2
6 6 3
7 10 10
8 8 1
9 2 4
10 7 6
14
1 6 11
2 11 9
3 8 7
4 12 8
5 9 20
6 3 2
7 1 6
8 2 13
9 15 1
10 14 17
11 13 19
12 5 18
13 7 3
14 10 16

Sample Output

10 8 7 3 4 9 5 6 2 1 10
14 9 10 11 5 12 8 7 6 13 4 14 1 3 2
/*
poj 1696 叉积理解 给你n个点,要求从一个点出发,每次只能 左or直走. 求路径
先找出最做下角的点,然后通过叉积排序判断出离当前点需要旋转最小角度可以到达的点
如果两个点在一条直线上面,则选取距离最近的 hhh-2016-05-06 20:40:31
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <cmath>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1) using namespace std;
const int maxn = 40010;
double eps = 1e-8;
int tot;
int n,m; int sgn(double x)
{
if(fabs(x) < eps) return 0;
if(x < 0)
return -1;
else
return 1;
} struct Point
{
int id;
double x,y;
Point() {}
Point(double _x,double _y)
{
x = _x,y = _y;
}
Point operator -(const Point &b)const
{
return Point(x-b.x,y-b.y);
}
double operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
}; struct Line
{
Point s,t;
Line() {}
Line(Point _s,Point _t)
{
s = _s;
t = _t;
}
pair<int,Point> operator &(const Line&b)const
{
Point res = s;
if( sgn((s-t) ^ (b.s-b.t)) == 0) //通过叉积判断
{
if( sgn((s-b.t) ^ (b.s-b.t)) == 0)
return make_pair(0,res);
else
return make_pair(1,res);
}
double ta = ((s-b.s)^(b.s-b.t))/((s-t)^(b.s-b.t));
res.x += (t.x-s.x)*ta;
res.y += (t.y-s.y)*ta;
return make_pair(2,res);
}
};
Point tp;
Point po[maxn]; double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
} bool cmp(Point a,Point b)
{
double t = (a-tp)^(b-tp);
if(sgn(t) == 0)
{
return dist(a,tp) < dist(b,tp);
}
if(sgn(t) < 0)
return false;
else
return true;
} int main()
{
int n,T;
scanf("%d",&T);
while(T--)
{
scanf("%d", &n);
tp.x = 10000,tp.y = 10000;
for(int i = 0; i < n; i++)
{
scanf("%d%lf%lf",&po[i].id,&po[i].x,&po[i].y);
if(po[i].y < tp.y || (po[i].y == tp.y && po[i].x < tp.x))
{
tp = po[i];
}
} for(int i = 0; i < n; i++)
{
sort(po+i,po+n,cmp);
tp = po[i];
}
printf("%d ",n);
for(int i = 0; i < n; i++)
{
printf("%d%c",po[i].id, i == n-1 ? '\n':' ');
}
}
return 0;
}

  

poj 1696 叉积理解的更多相关文章

  1. poj 2318 叉积+二分

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13262   Accepted: 6412 Description ...

  2. poj 1696 (计算几何基础)

    poj 1696 Space Ant 链接:http://poj.org/problem?id=1696 题意:在坐标轴上,给定n个点的 id 以及点的坐标(xi, yi),让你以最底端点开始,从右依 ...

  3. poj 1696 Space Ant(模拟+叉积)

    Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3840   Accepted: 2397 Descrip ...

  4. POJ 1696 Space Ant 极角排序(叉积的应用)

    题目大意:给出n个点的编号和坐标,按逆时针方向连接着n个点,按连接的先后顺序输出每个点的编号. 题目思路:Cross(a,b)表示a,b的叉积,若小于0:a在b的逆时针方向,若大于0a在b的顺时针方向 ...

  5. POJ 1696 - Space Ant 凸包的变形

    Technorati Tags: POJ,计算几何,凸包 初学计算几何,引入polygon后的第一个挑战--凸包 此题可用凸包算法做,只要把压入凸包的点从原集合中排除即可,最终形成图形为螺旋线. 关于 ...

  6. 简单几何(凸包) POJ 1696 Space Ant

    题目传送门 题意:一个蚂蚁一直往左边走,问最多能走多少步,且输出路径 分析:就是凸包的变形题,凸包性质,所有点都能走.从左下角开始走,不停排序.有点纠结,自己的凸包不能AC.待理解透凸包再来写.. 好 ...

  7. poj 1696 Space Ant (极角排序)

    链接:http://poj.org/problem?id=1696 Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

  8. 补充一下我对 POJ 3273 的理解,这肯定是我一生写的最多的题解。。。

    题目:http://poj.org/problem?id=3273 当分成的组数越多,所有组的最大值就会越小或不变,这一点不难证明:    如果当前分成了group组,最大值是max,那么max的这一 ...

  9. POJ 1696 Space Ant(点积的应用)

    Space Ant 大意:有一仅仅蚂蚁,每次都仅仅向当前方向的左边走,问蚂蚁走遍全部的点的顺序输出.開始的点是纵坐标最小的那个点,開始的方向是開始点的x轴正方向. 思路:从開始点開始,每次找剩下的点中 ...

随机推荐

  1. HASH方法课下补分博客

    课堂要求:利用除留余数法为下列关键字集合的存储设计hash函数,并画出分别用开放寻址法和拉链法解决冲突得到的空间存储状态(散列因子取0.75)关键字集合:85,75,57,60,65,(你的8位学号相 ...

  2. Oracle查询用户权限

    Oracle查询用户权限 -- 确定角色的权限select * from role_tab_privs ;              包含了授予角色的对象权限select * from role_ro ...

  3. 详谈C++虚函数表那回事(一般继承关系)

    沿途总是会出现关于C++虚函数表的问题,今天做一总结: 1.什么是虚函数表: 虚函数(Virtual Function)是通过一张虚函数表(Virtual Table)来实现的.简称为V-Table. ...

  4. Spring MVC Restful Put方法无法获取参数值

    Spring MVC Restful 无法通过@ReqeustParam获取参数值 原因是Tomcat只支持POST/GET获取参数值,对于PUT这些方法需要通过HttpPutFormContentF ...

  5. MongoDB启动客户端和服务端

    要在MongoDB安装(我安装在D盘)的目录的根目录下,先建data目录,然后data目录下再建db目录(结果:D:\data\db). 然后cmd进入bin目录,执行.\mongod.exe启动服务 ...

  6. ASP.NET MVC中错误处理方式

    /// <summary> /// 标记了HandleError,并指明错误处理页为AboutError.aspx /// </summary> /// <returns ...

  7. Hazelcast分布式

    一般的应用正式环境中都不止一台服务器(也就是说是集群的),那么如果只是简单的将数据预加载到内存,那么就会有数据不同步的现象. (更新了其中一台JVM,另一台JVM并不会收到通知从而保持数据同步). 这 ...

  8. Python内置函数(24)——set

    英文文档: class set([iterable]) Return a new set object, optionally with elements taken from iterable. s ...

  9. 隐藏Easy UI 中parent.$.modalDialog 的button

    例子: buttons : [ { text : '关闭', handler : function() { parent.$.modalDialog.handler.dialog('close'); ...

  10. Python Tornado初学笔记之表单与模板(一)

    Tornado中的表单和HTML5中的表单具有相同的用途,同样是用于内容的填写.只是不同的是Tornado中的表单需要传入到后台,然后通过后台进行对模板填充. 模板:是一个允许嵌入Python代码片段 ...