CF698C. LRU [容斥原理 概率]
CF698C. LRU
题意:n种物品,大小为k的队列,\(p_i\)的概率选择第i种物品放入队尾,如果已经有i了就不放了。队列大小>k时弹出队首。求\(10^{100}\)次操作后每种物品在队列里的概率
为什么没有官方题解啊,所以看了讨论区的题解
一开始想的是,一个元素在队列里,说明后来加入的元素种类<k,对于每种物品i,求出每个\(|S| =0…k-1 : i \notin S\)的集合出现在i右面的概率就行了。但这时候要求的是\(S\)中每种物品至少出现1次,至多无限次,只是简单的乘上\(\prod\limits_{i \in S}p_i\) 再乘上 \(\frac{1}{1-x}\)是不对的。
所以考虑容斥原理,求出\(S\)的任意子集出现的概率。
求这个概率很简单,每种元素可以不出现,设\(x=\sum\limits_{i \in S}p_i\),那么
\(P=x+x^2+...+x^{\infty}=\frac{1}{1-x}\)
根据容斥原理,\(i\)的答案就是
\]
和之前的恰好k个问题一样,这个容斥系数需要乘上超集的个数,比如大小为\(i\)的集合,他的大小为\(j\)的超集的个数是\(\binom{n-1-i}{j-i}\),注意是\(n-1\)因为当前计算答案的元素不能选
需要注意的是,我们要同时求恰好\(0...k-1\)个,所以每个的容斥系数都要+1,并且要处理之前所有大小的超集
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=21, M=(1<<20)+5;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
int n, k, c[N][N];
double p[N], sum[M], coe[N], g[M];
inline int one(int x) { int c=0; while(x) x&=x-1, c++; return c; }
int main() {
freopen("in","r",stdin);
n=read(); k=read();
for(int i=0; i<n; i++) scanf("%lf",&p[i]), sum[1<<i] = p[i];
c[0][0]=1;
for(int i=1; i<=n; i++) {
c[i][0]=1;
for(int j=1; j<=i; j++) c[i][j] = c[i-1][j] + c[i-1][j-1];
}
int all=1<<n;
for(int i=0; i<all; i++) if(!sum[i]) sum[i] = sum[i&-i] + sum[i^(i&-i)];
for(int i=k-1; i>=0; i--) {
coe[i] = 1;
for(int j=i+1; j<=k-1; j++) coe[i] -= coe[j] * c[n-1-i][j-i];
//printf("coe %d %lf\n",i,coe[i]);
}
for(int i=0; i<n; i++) {
if(p[i]==0 || p[i]==1 || k==1) {printf("%.9lf ", p[i]); continue;}
double ans=0;
for(int s=0; s<all; s++)
if(!((1<<i) & s) && one(s)<=k-1) ans += coe[one(s)]/(1-sum[s]);// printf("s %d %lf\n",s, ans);
printf("%.9lf ", p[i]*ans);
}
}
CF698C. LRU [容斥原理 概率]的更多相关文章
- CF698C - LRU
这又是什么毒瘤..... 解:把操作序列倒着来,就是考虑前k个入队的元素了.显然这样每个元素的概率不变. 状压.设fs表示当前元素为s的概率. 每次转移的时候选择一个不在s中的元素,作为下一个加入的元 ...
- hdu4336 Card Collector 概率dp(或容斥原理?)
题意: 买东西集齐全套卡片赢大奖.每个包装袋里面有一张卡片或者没有. 已知每种卡片出现的概率 p[i],以及所有的卡片种类的数量 n(1<=n<=20). 问集齐卡片需要买东西的数量的期望 ...
- Codeforces Round #363 LRU(概率 状压DP)
状压DP: 先不考虑数量k, dp[i]表示状态为i的概率,状态转移方程为dp[i | (1 << j)] += dp[i],最后考虑k, 状态表示中1的数量为k的表示可行解. #incl ...
- 51Nod 1667 概率好题 - 容斥原理
题目传送门 无障碍通道 有障碍通道 题目大意 若$L_{i}\leqslant x_{i} \leqslant R_{i}$,求$\sum x_{i} = 0$以及$\sum x_{i} < 0 ...
- BZOJ4036 HAOI2015按位或(概率期望+容斥原理)
考虑min-max容斥,改为求位集合内第一次有位变成1的期望时间.求出一次操作选择了S中的任意1的概率P[S],期望时间即为1/P[S]. 考虑怎么求P[S].P[S]=∑p[s] (s&S& ...
- LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)
考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...
- 2018.08.31 bzoj3566: [SHOI2014]概率充电器(概率dp+容斥原理)
传送门 概率dp好题啊. 用f[i]" role="presentation" style="position: relative;">f[i] ...
- [LibreOJ 3124]【CTS2019】氪金手游【容斥原理】【概率】【树形DP】
Description Solution 首先它的限制关系是一个树形图 首先考虑如果它是一个外向树该怎么做. 这是很简单的,我们相当于每个子树的根都是子树中最早出现的点,概率是容易计算的. 设DP状态 ...
- [LOJ3124][CTS2019|CTSC2019]氪金手游:树形DP+概率DP+容斥原理
分析 首先容易得出这样一个事实,在若干物品中最先被选出的是编号为\(i\)的物品的概率为\(\frac{W_i}{\sum_{j=1}^{cnt}W_j}\). 假设树是一棵外向树,即父亲比儿子先选( ...
随机推荐
- java 跳出多层循环
lableB: for(int i=0;i<10;i++){ lableA: for(int j=0;j<10;j++){ System.out.println(j); if(j==1){ ...
- [国嵌攻略][151][nandflash驱动程序设计]
初始化 打开/drivers/mtd/nand/s3c2410.c找到nand flash驱动程序代码,找到模块初始化函数s3c_nand_init,找到platform_driver中的probe函 ...
- vue-cli脚手架的环境搭建
vue-cli (1)检查node版本 在安装vue的环境之前,安装NodeJS环境是必须的.可以使用node -v指令检查,需要保证安装了4.0版本以上的nodeJS环境. 当然,没有安装的话,去N ...
- 从零开始学习前端JAVASCRIPT — 1、JavaScript基础
1:定义:javascript是一种弱类型.动态类型.解释型的脚本语言. 弱类型:类型检查不严格,偏向于容忍隐式类型转换. 强类型:类型检查严格,偏向于不容忍隐式类型转换. 动态类型:运行的时候执行类 ...
- 10年java过来人聊聊自己的自学、培训和工作经历
一 . 自我介绍 我叫王涛,我是一位北漂十年的码农,2008年9月份开始自学java,三个月后,自学无果,于2008年11月份开始参加培训,培训完之后,我觉得自己还是啥也不会,只会抄抄代码,竟然连de ...
- PHP性能分析工具xhprof的安装使用与注意事项
前言 xhprof由facebook开源出来的一个PHP性能监控工具,占用资源很少,甚至能够在生产环境中进行部署. 它可以结合graphviz使用,能够以图片的形式很直观的展示代码执行耗时. 下面主要 ...
- php 下载文件的头信息 Determine Content Type
<?php if(!function_exists('mime_content_type')) { function mime_content_type($filename) { $mime_t ...
- TP5.0 excel 导入导出
引第三方的phpexcel类库放到 ThinkPHP\Library\Vendor\demo下,自己建的文件夹demo 再将Excel.class放到ThinkPHP\Library\Org\clas ...
- OpenCV3.4两种立体匹配算法效果对比
以OpenCV自带的Aloe图像对为例: 1.BM算法(Block Matching) 参数设置如下: ) + ) & -; cv::Ptr<cv::StereoBM> b ...
- 利用光场进行深度图估计(Depth Estimation)算法之二——匹配算法
光场相机由于能够捕获相机内部光线的强度和方向而得到整个光场,可以实现重聚焦(refocus)和视角变换等功能.进而可以进行深度估计获取深度图,前面说过利用重聚焦的图像进行深度估计,今天说一下利用不同视 ...