传送门

题意:

一棵树,询问一个子树内出现次数$\ge k$的颜色有几种,Candy?这个沙茶自带强制在线


吐槽:

本来一道可以离散的莫队我非要强制在线用分块做;上午就开始写了然后发现思路错了...;改 下午继续写....然后发现看大了数据范围卡空间了...;改 然后又发现好多bug...;再改 然后发现TLE了... ;改块的大小....可恶又卡空间了.... ;改short...可恶溢出了;改unsigned short....可恶n总共才1e5怎么练unsigned short也溢出了.....; 开O2...还不行....;然后发现之前把块的大小和数量搞反了....;继续改块的大小再加上有理有据对本题特性的vector优化.....终于A了.................

题解:

一开始想成已经知道k预处理f不用第三维了(md那还用分块干什么)

对出现次数$>S$和$\le S$的分开讨论

预处理$f[i][j][k]$为块i到块j出现次数$[k,S]$的有几种

$s[i][j]$为前i块颜色j出现了几次

询问的时候

两边不完整的块暴力枚举

$>S$的部分不超过$\frac{N}{S}$种,单独暴力枚举(注意如果两边枚举过了就不能重复枚举了)

$[k,S]$的部分直接用预处理的f

#pragma GCC optimize ("O2")
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=1e5+, M=, S=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} int n,Q,col,a[N],u,v,k;
int cou[N], big[N], tot, mark[N];bool biiig[N];
struct edge{int v,ne;}e[N<<];
int cnt,h[N];
inline void ins(int u,int v){
e[++cnt]=(edge){v,h[u]}; h[u]=cnt;
e[++cnt]=(edge){u,h[v]}; h[v]=cnt;
}
int dfc,L[N],R[N];
int t[N];
void dfs(int u,int fa){
L[u]=++dfc; a[dfc]=t[u];
for(int i=h[u];i;i=e[i].ne)
if(e[i].v!=fa) dfs(e[i].v, u);
R[u]=dfc;
} int block,m,pos[N];
struct _blo{int l,r;}b[M];
void ini(){
//block=sqrt(n);
block=;
m=(n-)/block+;
for(int i=;i<=n;i++) pos[i]=(i-)/block+;
for(int i=;i<=m;i++) b[i].l=(i-)*block+, b[i].r=i*block;
b[m].r=n;
} struct Block{
int f[M][M][S], c[N], s[M][N]; void Set0(int x){
for(int i=;i<=col;i++) s[x][i]=s[x-][i];
for(int i=b[x].l; i<=b[x].r; i++) s[x][a[i]]++;
} void Set1(int x){
for(int t=x;t<=m;t++){
for(int i=b[t].l; i<=b[t].r; i++) if(!biiig[ a[i] ]) c[a[i]]++;
for(int i=b[t].l; i<=b[t].r; i++) if(!biiig[ a[i] ] && c[a[i]]>){
int _=s[t-][a[i]] - s[x-][a[i]];
f[x][t][ _+c[a[i]] ]++;
f[x][t][ _ ]--;
c[a[i]]=;
}
for(int i=block; i>=; i--) f[x][t][i]+=f[x][t][i+];
for(int i=; i<=block; i++) f[x][t][i]+=f[x][t-][i];
}
} int Que(int l,int r,int k){
int pl=pos[l], pr=pos[r];
int ans=;
if(pl==pr){
for(int i=l; i<=r; i++) c[a[i]]++;
for(int i=l; i<=r; i++) if(c[a[i]]>) ans+= c[a[i]]>=k, c[a[i]]=;
}else{
for(int i=; i<=tot; i++) mark[ big[i] ]=;
vector<int> v;
int *rr=s[pr], *ll=s[pl-];
for(int i=l; i<=b[pl].r; i++){
mark[ a[i] ]=;
if(rr[a[i]] - ll[a[i]]>=k)
c[a[i]]++, v.push_back(a[i]);
}
for(int i=b[pr].l; i<=r; i++){
mark[ a[i] ]=;
if(rr[a[i]] - ll[a[i]]>=k)
c[a[i]]++, v.push_back(a[i]);
} for(int i=; i<(int)v.size(); i++) if(c[v[i]]>){
int _=s[pr-][v[i]] - s[pl][v[i]];
if(biiig[ v[i] ]) ans+= _+c[v[i]]>=k;
else ans+= (_<k && _+c[v[i]]>=k);
c[v[i]]=;
} if(k<=block) ans+=f[pl+][pr-][k];
for(int i=;i<=tot;i++) if(!mark[ big[i] ])
ans+= s[pr-][big[i]] - s[pl][big[i]] >= k;
}
return ans;
}
}B; int main(){
// freopen("in","r",stdin);
n=read(); Q=read(); ini();
for(int i=;i<=n;i++) a[i]=t[i]=read(), col=max(col, a[i]), cou[a[i]]++;
for(int i=;i<n;i++) ins(read(), read());
dfs(,); for(int i=;i<=col;i++) if(cou[i]>block) big[++tot]=i, biiig[i]=;
for(int i=;i<=m;i++) B.Set0(i);
for(int i=;i<=m;i++) B.Set1(i); while(Q--){
u=read(); k=read();
printf("%d\n", B.Que(L[u], R[u], k) );
}
}

CF 375D. Tree and Queries加强版!!!【dfs序分块 大小分类讨论】的更多相关文章

  1. Codeforces 375D Tree and Queries(DFS序+莫队+树状数组)

    题目链接  Tree and Queries 题目大意  给出一棵树和每个节点的颜色.每次询问$vj, kj$ 你需要回答在以$vj$为根的子树中满足条件的的颜色数目, 条件:具有该颜色的节点数量至少 ...

  2. CF 375D. Tree and Queries【莫队 | dsu on tree】

    题意: 一棵树,询问一个子树内出现次数$≥k$的颜色有几种 强制在线见上一道 用莫队不知道比分块高到哪里去了,超好写不用调7倍速度!!! 可以用分块维护出现次数这个权值,实现$O(1)-O(\sqrt ...

  3. CodeForces 375D Tree and Queries 莫队||DFS序

    Tree and Queries 题意:有一颗以1号节点为根的树,每一个节点有一个自己的颜色,求出节点v的子数上颜色出现次数>=k的颜色种类. 题解:使用莫队处理这个问题,将树转变成DFS序区间 ...

  4. CodeForces - 375D Tree and Queries (莫队+dfs序+树状数组)

    You have a rooted tree consisting of n vertices. Each vertex of the tree has some color. We will ass ...

  5. Codeforces 375D - Tree and Queries(dfs序+莫队)

    题目链接:http://codeforces.com/contest/351/problem/D 题目大意:n个数,col[i]对应第i个数的颜色,并给你他们之间的树形关系(以1为根),有m次询问,每 ...

  6. 【BZOJ1803】Spoj1487 Query on a tree III 主席树+DFS序

    [BZOJ1803]Spoj1487 Query on a tree III Description You are given a node-labeled rooted tree with n n ...

  7. SPOJ Query on a tree III (树剖(dfs序)+主席树 || Splay等平衡树)(询问点)

    You are given a node-labeled rooted tree with n nodes. Define the query (x, k): Find the node whose ...

  8. POJ 3321 Apple Tree (树状数组+dfs序)

    题目链接:http://poj.org/problem?id=3321 给你n个点,n-1条边,1为根节点.给你m条操作,C操作是将x点变反(1变0,0变1),Q操作是询问x节点以及它子树的值之和.初 ...

  9. SP1487 PT07J - Query on a tree III 主席树+dfs序

    Code: #include<iostream> #include<cstdio> #include<algorithm> #include<string&g ...

随机推荐

  1. H5基础浏览器兼容性

    <!DOCTYPE HTML><html><body> <video width="320" height="240" ...

  2. yum指令

    接上个教程,如果用yum list 命名,运行后出现如下结果:则正确搭建了环境 如 yum search httpd 搜索apache的包 安装gcc ,是c语言的编译器 注意:LANG是临时改变的. ...

  3. Git 忽略提交 .gitignore

    在使用Git的过程中,我们喜欢有的文件比如日志,临时文件,编译的中间文件等不要提交到代码仓库,这时就要设置相应的忽略规则,来忽略这些文件的提交. Git 忽略文件提交的方法 有三种方法可以实现忽略Gi ...

  4. VMWare 安装ubuntu,虚机设置静态IP接入公网

    本文提供的kafka安装配置为Linux(ubuntu-16.04.3) 1.首先安装VMarea(14.0.0 build-6661328) 2.到http://www.ubuntu.org.cn/ ...

  5. HDU 2243 Knight Moves

    题目: A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find th ...

  6. .30-浅析webpack源码之doResolve事件流(1)

    这里所有的插件都对应着一个小功能,画个图整理下目前流程: 上节是从ParsePlugin中出来,对'./input.js'入口文件的路径做了处理,返回如下: ParsePlugin.prototype ...

  7. 【django基础补充之URL,视图,模版】

    一.url路由配置 URL配置(URLconf)就像Django 所支撑网站的目录.它的本质是URL与要为该URL调用的视图函数之间的映射表:你就是以这种方式告诉Django,对于这个URL调用这段代 ...

  8. 从零开始学习前端开发 — 9、标签嵌套规则及CSS常用样式覆盖

    1. 块级元素可以包含内联元素或某些块级元素,但内联元素却不能包含块级元素,它只能包含其它的内联元素: <div><h1></h1><p></p& ...

  9. Java学习笔记22---内部类之成员内部类的继承问题

    成员内部类可以继承其他的类,也可以被其它类继承,本文主要说明其它类继承成员内部类的问题. 本文要点如下: 1).成员内部类的子类可以是内部类,也可以不是内部类: 2).当成员内部类的子类不是内部类或子 ...

  10. HTML 5  标签

    HTML 5 标签 标签定义文档中的节(section.区段).比如章节.页眉.页脚或文档中的其他部分. E 9+.Firefox.Opera.Chrome 和 Safari 标签. 注释:IE 8 ...