Portal

Description

给出长度为\(n(n\leq10^5)\)的序列\(\{a_n\}\)以及\(m(m\leq10^5)\)个下标集合\(\{S_m\}(\sum|S_i|\leq10^5)\),进行\(q(q\leq10^5)\)次操作:

  • 询问下标属于集合\(S_k\)的所有数之和。
  • 将下标属于集合\(S_k\)的所有数加\(x\)。

Solution

记\(N_0=\sqrt{\sum|S_i|}\)。

我们把集合划分成轻集合与重集合,大小超过\(N_0\)的集合就是重集合。容易知道重集合的个数不超过\(N_0\)。对于每个重集合,记录sum表示该集合的和,add表示该集合总体被加了的值,cnt[i]表示该集合与集合\(i\)的交集大小。

询问时,如果是重集合则输出sum;否则暴力求\(\{a\}\)上的和,再加上每个重集合对该轻集合的贡献add*cnt[k]

修改时,如果是重集合则add+=x;否则暴力修改\(\{a\}\)。然后更新每个重集合的sum,也就是加上x*cnt[k]

时间复杂度\(O(q\sqrt{\sum|S_i|})\)。

Code

//Subset Sums
#include <cstdio>
#include <cmath>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
typedef long long lint;
inline int read()
{
int x=0,f=1; char ch=getchar();
while(ch<'0'||'9'<ch) {if(ch=='-') f=-1; ch=getchar();}
while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int const N=1e5+1e3;
int const N0=400;
int n,m,q,n0; lint a[N];
int ori[N];
struct _set{int siz,id; vector<int> x;} s[N];
bool cmpSiz(_set x,_set y) {return x.siz>y.siz;}
bool tmp[N]; int cnt[N0][N]; lint add[N0],sum[N0];
int main()
{
n=read(),m=read(),q=read();
for(int i=1;i<=n;i++) a[i]=read();
int sumK=0;
for(int i=1;i<=m;i++)
{
s[i].siz=read(),s[i].id=i,s[i].x.push_back(0); sumK+=s[i].siz;
for(int p=1;p<=s[i].siz;p++) s[i].x.push_back(read());
}
sort(s+1,s+m+1,cmpSiz);
for(int i=1;i<=m;i++) ori[s[i].id]=i;
n0=sqrt(sumK); int cnt1=0;
for(int i=1;s[i].siz>=n0;i++) cnt1=i;
for(int i=1;i<=cnt1;i++)
{
memset(tmp,false,sizeof tmp);
for(int p=1;p<=s[i].siz;p++) sum[i]+=a[s[i].x[p]],tmp[s[i].x[p]]=true;
for(int j=1;j<=m;j++)
for(int p=1;p<=s[j].siz;p++) if(tmp[s[j].x[p]]) cnt[i][j]++;
}
for(int owo=1;owo<=q;owo++)
{
char opt; scanf("%c",&opt);
if(opt=='?')
{
int k=ori[read()];
if(k<=cnt1) printf("%lld\n",sum[k]);
else
{
lint res=0;
for(int p=1;p<=s[k].siz;p++) res+=a[s[k].x[p]];
for(int i=1;i<=cnt1;i++) res+=add[i]*cnt[i][k];
printf("%lld\n",res);
}
}
if(opt=='+')
{
int k=ori[read()]; lint v=read();
if(k<=cnt1) add[k]+=v;
else for(int p=1;p<=s[k].siz;p++) a[s[k].x[p]]+=v;
for(int i=1;i<=cnt1;i++) sum[i]+=v*cnt[i][k];
}
}
return 0;
}

P.S.

可以用vector<int>存储集合元素,直接开数组内存太大。

要开long long啊啊啊啊啊!

Codeforces348C - Subset Sums的更多相关文章

  1. 洛谷P1466 集合 Subset Sums

    P1466 集合 Subset Sums 162通过 308提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 对于从1到N (1 ...

  2. Project Euler 106:Special subset sums: meta-testing 特殊的子集和:元检验

    Special subset sums: meta-testing Let S(A) represent the sum of elements in set A of size n. We shal ...

  3. Project Euler P105:Special subset sums: testing 特殊的子集和 检验

    Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall cal ...

  4. Project Euler 103:Special subset sums: optimum 特殊的子集和:最优解

    Special subset sums: optimum Let S(A) represent the sum of elements in set A of size n. We shall cal ...

  5. CodeForces 348C Subset Sums(分块)(nsqrtn)

    C. Subset Sums time limit per test 3 seconds memory limit per test 256 megabytes input standard inpu ...

  6. DP | Luogu P1466 集合 Subset Sums

    题面:P1466 集合 Subset Sums 题解: dpsum=N*(N+1)/2;模型转化为求选若干个数,填满sum/2的空间的方案数,就是背包啦显然如果sum%2!=0是没有答案的,就特判掉F ...

  7. spoj-SUBSUMS - Subset Sums

    SUBSUMS - Subset Sums Given a sequence of N (1 ≤ N ≤ 34) numbers S1, ..., SN (-20,000,000 ≤ Si ≤ 20, ...

  8. 洛谷 P1466 集合 Subset Sums Label:DP

    题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子 ...

  9. 【USACO 2.2】Subset Sums (DP)

    N (1 <= N <= 39),问有多少种把1到N划分为两个集合的方法使得两个集合的和相等. 如果总和为奇数,那么就是0种划分方案.否则用dp做. dp[i][j]表示前 i 个数划分到 ...

随机推荐

  1. NDk编译opencv for Android,并引用在Unity3d游戏中的一般步骤

    本文使用:Unity3d + opencv + Android Unity3d中可以调用opencv 编译好的.so 动态库,在生成Android apk时可以正常运行.   因为Android系统是 ...

  2. 【php】phpExcel使用教程,如何导出excel表格

    [1]下载phpExcel类文件 可在官方去下载 我们只需要classes中的文件,把Classes文件复制到项目中 只需要2个文件就可以了  一个就是phpExcel(刚才我们复制过来的文件 Cla ...

  3. [DeeplearningAI笔记]改善深层神经网络_优化算法2.3_2.5_带修正偏差的指数加权平均

    Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.3 指数加权平均 举个例子,对于图中英国的温度数据计算移动平均值或者说是移动平均值( ...

  4. softmax_cross_entropy_with_logits

    softmax_cross_entropy_with_logits 原创文章,请勿转载 函数定义 def softmax_cross_entropy_with_logits(_sentinel=Non ...

  5. JVM类加载机制---类加载器

    一.概念 "通过一个类的全限定名来获取描述此类的二进制字节流",实现这个动作的代码模块成为 类加载器. 二.分类 从java开发人员的角度出发,系统提供的类加载器大致分为如下3类: ...

  6. Mybatis使用过程问题总结

    Mybatis配置文件 test语句问题 字符串比较问题 示例语句:<if test="isIbatis == 'Y'"></if> 问题:NumberEx ...

  7. 前端-Useful Js Plugins

    Validform.min.js:提供对表单的验证.提交等功能,具体可查阅相关文档,@Validform 示例: $("#id").Validform() ; WdatePicke ...

  8. (转)Elasticsearch 5 Ik+pinyin分词配置详解

    今天以这篇文章结束同城旅游网的面试,正好面试官也问到站内检索,可以尝试一下这篇文章介绍的方法.Elasticsearch 5 Ik+pinyin分词配置详解

  9. POJ [P3660] Cow Contest

    传递闭包经典应用 奶牛的名次能确定当且仅当在它前面的牛数+在他后面的牛数==n-1 在他前面和后面的牛数可以转化成求完传递闭包后的出度和入度 #include <iostream> #in ...

  10. Oracle的order by的中文排序问题

    Oracle 中查询结果按照某个中文字段或者英文字母(包括 符号)排序,并不会得到我们预期的结果,因为对于中文与英文字母及符号,Oracle实际是按照其对应的ASCII码值排序的! 可以看到按照中文村 ...