【BZOJ3884】上帝与集合的正确用法(欧拉定理,数论)

题面

BZOJ

题解

我们有欧拉定理:

当\(b \perp p\)时

\[a^b≡a^{b\%\varphi(p)}\pmod p
\]

否则

当\(b≥\varphi(p)\)时

\[a^b≡a^{b\%\varphi(p)+\varphi(p)}\pmod p
\]

这道题里面\(2\)的无穷次方显然会比\(\varphi(p)\)大

所以,递归调用这个公式

因此每次\(p\)都会变成\(\varphi(p)\)

所以,\(\varphi(p)\)必定会不断缩小

当其变成\(1\)的是否就不用再算下去了

直接返回\(0\)就好

回朔的时候快速幂算一下就可以啦

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
ll phi(ll x)
{
ll ret=x;
for(int i=2;i*i<=x;++i)
if(x%i==0)
{
ret=ret/i*(i-1);
while(x%i==0)x/=i;
}
if(x>1)ret=ret/x*(x-1);
return ret;
}
ll fpow(ll a,ll b,ll p)
{
ll s=1;
while(b){if(b&1)s=1ll*s*a%p;a=1ll*a*a%p;b>>=1;}
return s;
}
ll Query(int P)
{
if(P==1)return 0;
ll x=phi(P);
return fpow(2,Query(x)+x,P);
}
int main()
{
int T=read();
while(T--)
printf("%lld\n",Query(read()));
return 0;
}

【BZOJ3884】上帝与集合的正确用法(欧拉定理,数论)的更多相关文章

  1. bzoj3884: 上帝与集合的正确用法(数论)

    感觉是今天洛谷月赛T3的弱化版,会写洛谷T3之后这题一眼就会写了... 还是欧拉扩展定理 于是就在指数上递归%phi(p)+phi(p)直到1,则后面的指数就都没用了,这时候返回,边回溯边快速幂.因为 ...

  2. 【BZOJ3884】上帝与集合的正确用法 [欧拉定理]

    上帝与集合的正确用法 Time Limit: 5 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Input 第一行一个T ...

  3. BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  4. BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)

    Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 3860  Solved: 1751[Submit][Status][Discuss] Descripti ...

  5. bzoj3884: 上帝与集合的正确用法 扩展欧拉定理

    题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...

  6. BZOJ3884 上帝与集合的正确用法 【欧拉定理】

    题目 对于100%的数据,T<=1000,p<=10^7 题解 来捉这道神题 欧拉定理的一般形式: \[a^{m} \equiv a^{m \mod \varphi(p) + [m \ge ...

  7. bzoj3884上帝与集合的正确用法

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  8. [BZOJ3884] 上帝与集合的正确用法 (欧拉函数)

    题目链接:  https://www.lydsy.com/JudgeOnline/problem.php?id=3884 题目大意: 给出 M, 求 $2^{2^{2^{2^{...}}}}$ % M ...

  9. bzoj3884 上帝与集合的正确用法

    a^b mod P=a^(b mod phi(p)) mod p,利用欧拉公式递归做下去. 代码 #pragma comment(linker,"/STACK:1024000000,1024 ...

  10. bzoj3884: 上帝与集合的正确用法 欧拉降幂公式

    欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...

随机推荐

  1. Mysql查询某字段值重复的数据

    查询user表中,user_name字段值重复的数据及重复次数 select user_name,count(*) as count from user group by user_name havi ...

  2. Appium基于Python unittest自动化测试 & 自动化测试框架 -- PO并生成html测试报告

    基于python单元测试框架unittest完成appium自动化测试,生成基于html可视化测试报告 代码示例: #利用unittest并生成测试报告 class Appium_test(unitt ...

  3. python进阶学习笔记(一)

    python进阶部分要学习的内容: 学习目标: 1.函数式编程 1.1,什么是函数式编程 函数式编程是一种抽象计算的编程模式 不同语言的抽象层次不同: 函数式编程的特点: python支持的函数式编程 ...

  4. Spring-Security自定义登录页&inMemoryAuthentication验证

    Spring Security是为基于Spring的应用程序提供声明式安全保护的安全性框架.框架下内容比较多,可以做到按照角色权限对请求路径进行限制.今天主要验证自定义登录页,在内存用户存储中进行请求 ...

  5. 函数重载overload

    与void show(int a, char b, double c){}构成重载的有: a) void show(int x, char y, double z){} //no b) int sho ...

  6. 一不小心把Mysql数据库的root的账号的权限给弄没啦,该怎么办

    别急啊,现在只要你还能连接到Mysql,就问题不大! 首先,连接道Mysql,这里用Navicat进行讲解. 说明:root@localhost和root@127.0.0.1不是一个账号,也不是一回事 ...

  7. C语言_简单了解一下typedef

    作为一名PHPer,了解一下C还是有必要的,只是做一个简单的了解,因为并没有做开发C的想法. 关于typedef的详细说明,网上搜过了很多帖子,这篇算是最详细的了:http://blog.csdn.n ...

  8. 高性能JavaScript读书笔记

    零.组织结构 根据引言,作者将全书划分为四个部分: 一.页面加载js的最佳方式(开发前准备) 二.改善js代码的编程技巧(开发中) 三.构建与部署(发布) 四.发布后性能检测与问题追踪(线上问题优化) ...

  9. PAT1117. Eddington Number

    思路:搞懂题意是关键–E满足有共有E天骑车的距离超过E米,求最大的E! 将数组排序,我们假设最大的E是e,e满足条件有e天骑车超过e米,并且e+1不满足有e+1天骑车超过e+1米.那么我们可以逆序统计 ...

  10. UVA 1626 Brackets sequence 区间DP

    题意:给定一个括号序列,将它变成匹配的括号序列,可能多种答案任意输出一组即可.注意:输入可能是空串. 思路:D[i][j]表示区间[i, j]至少需要匹配的括号数,转移方程D[i][j] = min( ...