KFCM算法的matlab程序

在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行简单的实现,并求其准确度。

作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

1.采用iris数据库

iris_data.txt

5.1	3.5	1.4	0.2
4.9 3 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
5 3.6 1.4 0.2
5.4 3.9 1.7 0.4
4.6 3.4 1.4 0.3
5 3.4 1.5 0.2
4.4 2.9 1.4 0.2
4.9 3.1 1.5 0.1
5.4 3.7 1.5 0.2
4.8 3.4 1.6 0.2
4.8 3 1.4 0.1
4.3 3 1.1 0.1
5.8 4 1.2 0.2
5.7 4.4 1.5 0.4
5.4 3.9 1.3 0.4
5.1 3.5 1.4 0.3
5.7 3.8 1.7 0.3
5.1 3.8 1.5 0.3
5.4 3.4 1.7 0.2
5.1 3.7 1.5 0.4
4.6 3.6 1 0.2
5.1 3.3 1.7 0.5
4.8 3.4 1.9 0.2
5 3 1.6 0.2
5 3.4 1.6 0.4
5.2 3.5 1.5 0.2
5.2 3.4 1.4 0.2
4.7 3.2 1.6 0.2
4.8 3.1 1.6 0.2
5.4 3.4 1.5 0.4
5.2 4.1 1.5 0.1
5.5 4.2 1.4 0.2
4.9 3.1 1.5 0.2
5 3.2 1.2 0.2
5.5 3.5 1.3 0.2
4.9 3.6 1.4 0.1
4.4 3 1.3 0.2
5.1 3.4 1.5 0.2
5 3.5 1.3 0.3
4.5 2.3 1.3 0.3
4.4 3.2 1.3 0.2
5 3.5 1.6 0.6
5.1 3.8 1.9 0.4
4.8 3 1.4 0.3
5.1 3.8 1.6 0.2
4.6 3.2 1.4 0.2
5.3 3.7 1.5 0.2
5 3.3 1.4 0.2
7 3.2 4.7 1.4
6.4 3.2 4.5 1.5
6.9 3.1 4.9 1.5
5.5 2.3 4 1.3
6.5 2.8 4.6 1.5
5.7 2.8 4.5 1.3
6.3 3.3 4.7 1.6
4.9 2.4 3.3 1
6.6 2.9 4.6 1.3
5.2 2.7 3.9 1.4
5 2 3.5 1
5.9 3 4.2 1.5
6 2.2 4 1
6.1 2.9 4.7 1.4
5.6 2.9 3.6 1.3
6.7 3.1 4.4 1.4
5.6 3 4.5 1.5
5.8 2.7 4.1 1
6.2 2.2 4.5 1.5
5.6 2.5 3.9 1.1
5.9 3.2 4.8 1.8
6.1 2.8 4 1.3
6.3 2.5 4.9 1.5
6.1 2.8 4.7 1.2
6.4 2.9 4.3 1.3
6.6 3 4.4 1.4
6.8 2.8 4.8 1.4
6.7 3 5 1.7
6 2.9 4.5 1.5
5.7 2.6 3.5 1
5.5 2.4 3.8 1.1
5.5 2.4 3.7 1
5.8 2.7 3.9 1.2
6 2.7 5.1 1.6
5.4 3 4.5 1.5
6 3.4 4.5 1.6
6.7 3.1 4.7 1.5
6.3 2.3 4.4 1.3
5.6 3 4.1 1.3
5.5 2.5 4 1.3
5.5 2.6 4.4 1.2
6.1 3 4.6 1.4
5.8 2.6 4 1.2
5 2.3 3.3 1
5.6 2.7 4.2 1.3
5.7 3 4.2 1.2
5.7 2.9 4.2 1.3
6.2 2.9 4.3 1.3
5.1 2.5 3 1.1
5.7 2.8 4.1 1.3
6.3 3.3 6 2.5
5.8 2.7 5.1 1.9
7.1 3 5.9 2.1
6.3 2.9 5.6 1.8
6.5 3 5.8 2.2
7.6 3 6.6 2.1
4.9 2.5 4.5 1.7
7.3 2.9 6.3 1.8
6.7 2.5 5.8 1.8
7.2 3.6 6.1 2.5
6.5 3.2 5.1 2
6.4 2.7 5.3 1.9
6.8 3 5.5 2.1
5.7 2.5 5 2
5.8 2.8 5.1 2.4
6.4 3.2 5.3 2.3
6.5 3 5.5 1.8
7.7 3.8 6.7 2.2
7.7 2.6 6.9 2.3
6 2.2 5 1.5
6.9 3.2 5.7 2.3
5.6 2.8 4.9 2
7.7 2.8 6.7 2
6.3 2.7 4.9 1.8
6.7 3.3 5.7 2.1
7.2 3.2 6 1.8
6.2 2.8 4.8 1.8
6.1 3 4.9 1.8
6.4 2.8 5.6 2.1
7.2 3 5.8 1.6
7.4 2.8 6.1 1.9
7.9 3.8 6.4 2
6.4 2.8 5.6 2.2
6.3 2.8 5.1 1.5
6.1 2.6 5.6 1.4
7.7 3 6.1 2.3
6.3 3.4 5.6 2.4
6.4 3.1 5.5 1.8
6 3 4.8 1.8
6.9 3.1 5.4 2.1
6.7 3.1 5.6 2.4
6.9 3.1 5.1 2.3
5.8 2.7 5.1 1.9
6.8 3.2 5.9 2.3
6.7 3.3 5.7 2.5
6.7 3 5.2 2.3
6.3 2.5 5 1.9
6.5 3 5.2 2
6.2 3.4 5.4 2.3
5.9 3 5.1 1.8

iris_id.txt

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2.matlab程序

My_KFCM.m

function label_1=My_KFCM(K,sigma)
%输入K:聚类数,sigma:高斯核函数的参数
%输出:label_1:聚的类, para_miu_new:模糊聚类中心μ,responsivity:模糊隶属度
format long
eps=1e-4; %定义迭代终止条件的eps
alpha=2; %模糊加权指数,[1,+无穷)
max_iter=100; %最大迭代次数
data=dlmread('E:\www.cnblogs.com\kailugaji\data\iris\iris_data.txt');
%----------------------------------------------------------------------------------------------------
%对data做最大-最小归一化处理
[data_num,~]=size(data);
X=(data-ones(data_num,1)*min(data))./(ones(data_num,1)*(max(data)-min(data)));
[X_num,X_dim]=size(X);
%----------------------------------------------------------------------------------------------------
%随机初始化K个聚类中心
rand_array=randperm(X_num); %产生1~X_num之间整数的随机排列
para_miu=X(rand_array(1:K),:); %随机排列取前K个数,在X矩阵中取这K行作为初始聚类中心
responsivity=zeros(X_num,K);
R_up=zeros(X_num,K);
% ----------------------------------------------------------------------------------------------------
% KFCM算法
for t=1:max_iter
responsivity_new=responsivity; %上一步的隶属度矩阵
%欧氏距离,计算(X-para_miu)^2=X^2+para_miu^2-2*para_miu*X',矩阵大小为X_num*K
distant=(sum(X.*X,2))*ones(1,K)+ones(X_num,1)*(sum(para_miu.*para_miu,2))'-2*X*para_miu';
%高斯核函数,X_num*K的矩阵
kernel_fun=exp((-distant)/(2*sigma*sigma));
%更新隶属度矩阵X_num*K
for i=1:X_num
for j=1:K
if kernel_fun(i,j)==1
responsivity_new(i,j)=1./sum(responsivity_new(i,:)==0);
else
R_up(i,j)=(1-kernel_fun(i,j)).^(-1/(alpha-1)); %隶属度矩阵的分子部分
responsivity_new(i,j)= R_up(i,j)./sum( R_up(i,:),2);
end
end
end
%目标函数值
%fitness(t)=2*sum(sum((1-kernel_fun).*(responsivity.^(alpha))));
%更新聚类中心K*X_dim
miu_up=((kernel_fun.*responsivity_new)'.^(alpha))*X; %μ的分子部分
para_miu=miu_up./((sum((kernel_fun.*responsivity_new).^(alpha)))'*ones(1,X_dim));
if t>1
%if abs(fitness(t)-fitness(t-1))<eps
if norm(responsivity_new-responsivity)<=eps
break;
end
end
end
%iter=t; %实际迭代次数
[~,label_1]=max(responsivity_new,[],2);

succeed.m

function accuracy=succeed(K,id)
%输入K:聚的类,id:训练后的聚类结果,N*1的矩阵
N=size(id,1); %样本个数
p=perms(1:K); %全排列矩阵
p_col=size(p,1); %全排列的行数
new_label=zeros(N,p_col); %聚类结果的所有可能取值,N*p_col
num=zeros(1,p_col); %与真实聚类结果一样的个数
real_label=dlmread('E:\www.cnblogs.com\kailugaji\data\iris\iris_id.txt');
%将训练结果全排列为N*p_col的矩阵,每一列为一种可能性
for i=1:N
for j=1:p_col
for k=1:K
if id(i)==k
new_label(i,j)=p(j,k)-1; %iris数据库,0 1 2
end
end
end
end
%与真实结果比对,计算精确度
for j=1:p_col
for i=1:N
if new_label(i,j)==real_label(i)
num(j)=num(j)+1;
end
end
end
accuracy=max(num)/N;

Eg_KFCM.m

function ave_acc_KFCM=Eg_KFCM(K,sigma,max_iter)
%输入K:聚的类,max_iter是最大迭代次数,sigma:高斯核函数的参数
%输出ave_acc_KFCM:迭代max_iter次之后的平均准确度
s=0;
for i=1:max_iter
label_1=My_KFCM(K,sigma);
accuracy=succeed(K,label_1);
s=s+accuracy;
end
ave_acc_KFCM=s/max_iter;

3.结果

>> ave_acc_KFCM=Eg_KFCM(3,150,50)

ave_acc_KFCM =

   0.893333333333333

KFCM算法的matlab程序的更多相关文章

  1. KFCM算法的matlab程序(用FCM初始化聚类中心)

    KFCM算法的matlab程序(用FCM初始化聚类中心) 在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行实现,用FCM初始化聚类中心,并求其准确度与 ...

  2. GMM算法的matlab程序

    GMM算法的matlab程序 在“GMM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...

  3. GMM算法的matlab程序(初步)

    GMM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648508.html文章中已经介绍了GMM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...

  4. FCM算法的matlab程序2

    FCM算法的matlab程序2 在“FCM算法的matlab程序”这篇文章中已经用matlab程序对iris数据库进行实现,并求解准确度.下面的程序是另一种方法,是最常用的方法:先初始化聚类中心,在进 ...

  5. FCM算法的matlab程序

    FCM算法的matlab程序 在“FCM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...

  6. K-means算法的matlab程序

    K-means算法的matlab程序 在“K-means算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 ...

  7. FCM算法的matlab程序(初步)

    FCM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648430.html文章中已经介绍了FCM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...

  8. K-means算法的matlab程序(初步)

    K-means算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648369.html 文章中已经介绍了K-means算法,现在用matlab程序实现 ...

  9. ISODATA聚类算法的matlab程序

    ISODATA聚类算法的matlab程序 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 参考:Kmeans及ISODATA算法的matlab实现 算法 ...

随机推荐

  1. RNN入门(二)识别验证码

    介绍   作为RNN的第二个demo,笔者将会介绍RNN模型在识别验证码方面的应用.   我们的验证码及样本数据集来自于博客: CNN大战验证码,在这篇博客中,我们已经准备好了所需的样本数据集,不需要 ...

  2. [转]angular使用Md5加密

    本文转自:https://www.cnblogs.com/waitingbar/p/7527928.html 一.现象 用户登录时需要记住密码的功能,在前端需要对密码进行加密处理,增加安全性 二解决 ...

  3. [转]angular 监听窗口滚动

    本文转自:https://blog.csdn.net/ittvibe/article/details/80060801 转自:http://brianflove.com/2016/10/10/angu ...

  4. curl模拟ip和来源进行网站采集的实现方法

    对于限制了ip和来源的网站,使用正常的采集方式是不行的.这里说我的一种方法吧,使用php的curl类实现模拟ip和来源,可以实现采集限制ip和来源的网站. 1.设置页面限制ip和来源访问比如服务端的s ...

  5. Reinforcement Learning: An Introduction读书笔记(2)--多臂机

     > 目  录 <  k-armed bandit problem Incremental Implementation Tracking a Nonstationary Problem ...

  6. 4种方法实现Html转码

    <script> var HtmlUtil = { /*1.用浏览器内部转换器实现html转码*/ htmlEncode: function(html) { //1.首先动态创建一个容器标 ...

  7. 19 个常用的 JavaScript 简写方法

    来自:SangSir 链接:https://segmentfault.com/a/1190000012673854 原文:https://www.sitepoint.com/shorthand-jav ...

  8. -moz、-ms、-webkit浏览器前缀解释(PS:后续在详细解释)

    -moz-是Firefox Gecko内核,moz代表的是Firefox的开发商Mozill -ms代表ie浏览器私有属性 -webkit代表safari.chrome私有属性

  9. 从文本中提取图片路径(java 解析富文本处理 img 标签)

    很多项目都需要到富文本来添加内容,就好比新闻啊,旅游景点之类的,都需要使用富文本去添加数据,然而怎么我这边就发现了两个问题 怎样将富文本的图片的 src 获取出来? 方法一: 利用正则表达式: pub ...

  10. 【Spring源码解读】bean标签中的属性(二)你可能还不够了解的 abstract 属性和 parent 属性

    abstract 属性说明 abstract 在java的语义里是代表抽象的意思,用来说明被修饰的类是抽象类.在Spring中bean标签里的 abstract 的含义其实也差不多,表示当前bean是 ...