For a normed space \(X\), an isometric isomorphism can be defined from \(X\) to its second dual space \(X''\), i.e. \(J: X \rightarrow X''\), such that for all \(x \in X\), \(J(x) = J_x\) with \(J_x\) being defined as \(J_x(x') = x'(x) \; (\forall x' \in X')\). This map \(J\) is called the evaluation map. When the range of \(J\) is equal to \(X''\), we say \(X\) is reflexive. In this post, we'll prove that

  1. the evaluation map \(J\) really maps an element in \(X\) to an element in \(X''\);
  2. \(J\) is an isometric isomorphism from \(X\) to \(J(X)\).

Part 1

To prove \(J(x) = J_x \in X'' (\forall x \in X)\), we should show that \(J_x\) is both linear and continuous.

For the linearity of \(J_x\), let \(x', y' \in X'\) and \(a, b \in \mathbb{K}\). Due to the fact that \(X'\) is itself a linear space with respect to operator addition and scalar product in the sense of point-wise evaluation at \(x\), we have

\[
\begin{aligned}
J_x(ax' + by') &= (ax' + by')(x) = a x'(x) + b y'(x) \\
&= a J_x(x') + b J_x(y')
\end{aligned}.
\]

This proves \(J_x\) is linear and this linearity actually inherits from the linear structure of \(X'\).

For the continuity of \(J_x\), we need to show it is a bounded functional.

Because \(x' \in X'\) is bounded, for all \(x' \in X'\),

\[
\abs{J_x(x')} = \abs{x'(x)} \leq \norm{x'}_{X'} \cdot \norm{x}_X.
\]

We can see the norm of \(J_x\), i.e. \(\norm{J_x}_{X''}\) is bounded by \(\norm{x}_X\). Therefore, \(J_x\) is continuous. To sum up, we have \(J_x \in X''\).

Part 2

Next, we shall prove \(J\) is isometric, viz. norm-preserving.

In the above, we've already shown that \(\norm{J_x}_{X''} \leq \norm{x}_X\). If we can further prove \(\norm{J_x}_{X''} \geq \norm{x}_X\) so that \(\norm{J_x}_{X''} = \norm{x}_X\), \(J\) must be norm-preserving. The proof of this depends on whether we can find an \(x'\) in \(X'\), such that

\[
\frac{\abs{J_x(x')}}{\norm{x'}_{X'}} = \norm{x}_X,
\]

which naturally leads to

\[
\norm{x}_X \leq \norm{J_x}_{X''}.
\]

Let \(x_0\) be arbitrarily selected from \(X\). We can define a functional \(x'\) which at the moment can only be evaluated at \(x_0\) as \(x'(x_0) = \norm{x_0}_X\). Then we extend the domain of \(x'\) to the subspace \(M\) of \(X\) spanned by \(x_0\)

\[
M = \span\{x_0\} = \{x = c x_0 \vert c \in \mathbb{K}\}
\]

and for all \(x = c x_0 \in M\), define

\[
x'(x) = x'(c x_0) = c \norm{x_0}_X.
\]

It is obvious that the extended \(x'\) on \(M\) is linear. In addition, we have

\[
\abs{x'(x)} = \abs{x'(c x_0)} = \abs{c x'(x_0))} = \norm{c x_0}_X = \norm{x}_X,
\]

which indicates that \(x'\) is bounded and \(\norm{x'}_{X'} = 1\). Hence, \(x'\) belongs to the dual space \(M'\) of \(M\).

Next, by applying the Hahn-Banach theorem, we can extend the domain of \(x'\) from the subspace \(M\) of \(X\) to the whole space \(X\), while preserving the norm \(\norm{x'}_{X'} = 1\). Therefore, for this specific \(x' \in X'\),

\[
\frac{\abs{J_{x_0}(x')}}{\norm{x'}_{X'}} = \frac{\abs{x'(x_0)}}{1} = \norm{x_0}_X,
\]

so that

\[
\norm{x_0}_X \leq \norm{J_{x_0}}_{X''} \leq \norm{x_0}_X.
\]

Because \(x_0\) is arbitrarily selected from \(X\), we've proved that \(J: X \rightarrow X''\) is really an isometric map.

To prove \(J\) is an isomorphism between \(X\) and \(J(X) \subset X''\), we should prove \(J\) preserves the linear structure from \(X\) to \(X''\) and is also an injective map. For the preservation of linear structure, it has already been verified during the proof of the linearity of \(J_x\) as above. To show \(J\) is injective, let \(x_1, x_2 \in X\) and \(x_1 \neq x_2\). For sure we can find an \(x'\) in \(X'\) such that \(x'(x_1) \neq x'(x_2)\). Then for this \(x'\), we have \(J_{x_1}(x') = x'(x_1)\) is different from \(J_{x_2}(x') = x'(x_2)\), which indicates \(J_{x_1} \neq J_{x_2}\). Hence \(J\) is injective.

Conclusions

Summarizing the above proof, we arrive at the conclusion that \(J\) is an isometric isomorphism between \(X\) and \(J(X) \subset X''\).

Remark The key step in the above is during the proof of isometry, where a specific functional \(x'\) is firstly defined at a single point \(x_0 \in X\) with its value equal to \(\norm{x_0}_X\). Then its domain is extended to the span of \(x_0\) and further to the whole space \(X\) by using the Hahn-Banach theorem, which ensures the extension is both continuous and norm-preserving.

Evaluation map and reflexive space的更多相关文章

  1. Multiple address space mapping technique for shared memory wherein a processor operates a fault handling routine upon a translator miss

    Virtual addresses from multiple address spaces are translated to real addresses in main memory by ge ...

  2. freemarker导出带图片的word文档

    最近做一个关于文档导出功能, 顺便学习了下freemarker,做了个关于导出带图片的word文档,模板并没有写全,只是验证代码的正确性 这只是做一个小功能,故只做了后台代码关于导出的代码,并未与前台 ...

  3. [Swift]LeetCode770. 基本计算器 IV | Basic Calculator IV

    Given an expression such as expression = "e + 8 - a + 5" and an evaluation map such as {&q ...

  4. [LeetCode] Basic Calculator IV 基本计算器之四

    Given an expression such as expression = "e + 8 - a + 5" and an evaluation map such as {&q ...

  5. 770. Basic Calculator IV

    Given an expression such as expression = "e + 8 - a + 5" and an evaluation map such as {&q ...

  6. 10 The Go Programming Language Specification go语言规范 重点

    The Go Programming Language Specification go语言规范 Version of May 9, 2018 Introduction 介绍 Notation 符号 ...

  7. Procedural graphics architectures and techniques

    BACKGROUND The evolution of graphics rendering technology has led to the development of procedural t ...

  8. CartO

    Carto documentation The following is a list of properties provided in CartoCSS that you can apply to ...

  9. Vim配置文件

    转载 原文网址:http://www.cnblogs.com/ma6174/archive/2011/12/10/2283393.html 花了很长时间整理的,感觉用起来很方便,共享一下. 我的vim ...

随机推荐

  1. git与eclipse集成之代码冲突与解决

    1.1. 代码冲突与解决 目前使用git管理代码,产生冲突的原因,主要是当多个人向特性分支提交代码时,如果两个人修改了同一个文件,第二个人提交代码时就可能会冲突. 举例说明: 创建远程特性分支.远程个 ...

  2. Linux 安装Python和Django

    1.下载python源码包 网址: https://www.python.org/ 在Downloads中打开Source code 由于 Django1.11.15不兼容3.7版本的python 所 ...

  3. Dubbo原理解析-Dubbo内核实现之SPI简单介绍

    转自:https://blog.csdn.net/quhongwei_zhanqiu/article/details/41577159 Dubbo 采用微内核+插件体系,使得设计优雅,扩展性强.那所谓 ...

  4. awk-for循环简单用法

    文本: [root@VM_0_84_centos ~]# cat sshd.txt 1 2 3 4 5 6 7 8 9 循环打印上述文本 for 循环的固定格式   i=1设置i的初始变量  i< ...

  5. FormData中delete方法在ios不兼容

    1.移动端直接用的input的file上传图片(name=“file”必填) <input type="file" id="exampleInputFile1&qu ...

  6. css中input框不可点击+首行缩进

    Css 1)text-indent::首行缩进 2)disabled="true"设置input框不可以点击 3)Css:xx!important:声明提前优先级最高..!impo ...

  7. Confluence 6 警告的类型

    有下面的一些类型的警告. 警告和知识库(Alert and KB) 级别(Level) 默认阈值(Default threshold) 可配置(Configurable) Low free disk ...

  8. Java的家庭记账本程序(E)

    日期:2019.2.9 博客期:032 星期二 今天是把程序的相关Bug补一补,嗯`: 1.添加了跳转说明 生成了一个对于成员的权限声明内容,用户再登陆界面点击Go按钮后,切换至说明页面,再次点击Go ...

  9. 使用Spring配置数据源JdbcTemplate

    c3p0作为演示 1.编写资源文件(db.properties) jdbc.user=root jdbc.password=root jdbc.jdbcUrl=jdbc:mysql://localho ...

  10. SpringBoot图片上传(一)

    简单描述:点击上传文件的图标,上传文件,上传成功后,图标编程上传的图片. 吐槽:文件上传下载这种东西,总是感觉莫名的虚-_-||  也不知道是造了什么孽,(其实就是IO File这一块的知识了解的不太 ...