For a normed space \(X\), an isometric isomorphism can be defined from \(X\) to its second dual space \(X''\), i.e. \(J: X \rightarrow X''\), such that for all \(x \in X\), \(J(x) = J_x\) with \(J_x\) being defined as \(J_x(x') = x'(x) \; (\forall x' \in X')\). This map \(J\) is called the evaluation map. When the range of \(J\) is equal to \(X''\), we say \(X\) is reflexive. In this post, we'll prove that

  1. the evaluation map \(J\) really maps an element in \(X\) to an element in \(X''\);
  2. \(J\) is an isometric isomorphism from \(X\) to \(J(X)\).

Part 1

To prove \(J(x) = J_x \in X'' (\forall x \in X)\), we should show that \(J_x\) is both linear and continuous.

For the linearity of \(J_x\), let \(x', y' \in X'\) and \(a, b \in \mathbb{K}\). Due to the fact that \(X'\) is itself a linear space with respect to operator addition and scalar product in the sense of point-wise evaluation at \(x\), we have

\[
\begin{aligned}
J_x(ax' + by') &= (ax' + by')(x) = a x'(x) + b y'(x) \\
&= a J_x(x') + b J_x(y')
\end{aligned}.
\]

This proves \(J_x\) is linear and this linearity actually inherits from the linear structure of \(X'\).

For the continuity of \(J_x\), we need to show it is a bounded functional.

Because \(x' \in X'\) is bounded, for all \(x' \in X'\),

\[
\abs{J_x(x')} = \abs{x'(x)} \leq \norm{x'}_{X'} \cdot \norm{x}_X.
\]

We can see the norm of \(J_x\), i.e. \(\norm{J_x}_{X''}\) is bounded by \(\norm{x}_X\). Therefore, \(J_x\) is continuous. To sum up, we have \(J_x \in X''\).

Part 2

Next, we shall prove \(J\) is isometric, viz. norm-preserving.

In the above, we've already shown that \(\norm{J_x}_{X''} \leq \norm{x}_X\). If we can further prove \(\norm{J_x}_{X''} \geq \norm{x}_X\) so that \(\norm{J_x}_{X''} = \norm{x}_X\), \(J\) must be norm-preserving. The proof of this depends on whether we can find an \(x'\) in \(X'\), such that

\[
\frac{\abs{J_x(x')}}{\norm{x'}_{X'}} = \norm{x}_X,
\]

which naturally leads to

\[
\norm{x}_X \leq \norm{J_x}_{X''}.
\]

Let \(x_0\) be arbitrarily selected from \(X\). We can define a functional \(x'\) which at the moment can only be evaluated at \(x_0\) as \(x'(x_0) = \norm{x_0}_X\). Then we extend the domain of \(x'\) to the subspace \(M\) of \(X\) spanned by \(x_0\)

\[
M = \span\{x_0\} = \{x = c x_0 \vert c \in \mathbb{K}\}
\]

and for all \(x = c x_0 \in M\), define

\[
x'(x) = x'(c x_0) = c \norm{x_0}_X.
\]

It is obvious that the extended \(x'\) on \(M\) is linear. In addition, we have

\[
\abs{x'(x)} = \abs{x'(c x_0)} = \abs{c x'(x_0))} = \norm{c x_0}_X = \norm{x}_X,
\]

which indicates that \(x'\) is bounded and \(\norm{x'}_{X'} = 1\). Hence, \(x'\) belongs to the dual space \(M'\) of \(M\).

Next, by applying the Hahn-Banach theorem, we can extend the domain of \(x'\) from the subspace \(M\) of \(X\) to the whole space \(X\), while preserving the norm \(\norm{x'}_{X'} = 1\). Therefore, for this specific \(x' \in X'\),

\[
\frac{\abs{J_{x_0}(x')}}{\norm{x'}_{X'}} = \frac{\abs{x'(x_0)}}{1} = \norm{x_0}_X,
\]

so that

\[
\norm{x_0}_X \leq \norm{J_{x_0}}_{X''} \leq \norm{x_0}_X.
\]

Because \(x_0\) is arbitrarily selected from \(X\), we've proved that \(J: X \rightarrow X''\) is really an isometric map.

To prove \(J\) is an isomorphism between \(X\) and \(J(X) \subset X''\), we should prove \(J\) preserves the linear structure from \(X\) to \(X''\) and is also an injective map. For the preservation of linear structure, it has already been verified during the proof of the linearity of \(J_x\) as above. To show \(J\) is injective, let \(x_1, x_2 \in X\) and \(x_1 \neq x_2\). For sure we can find an \(x'\) in \(X'\) such that \(x'(x_1) \neq x'(x_2)\). Then for this \(x'\), we have \(J_{x_1}(x') = x'(x_1)\) is different from \(J_{x_2}(x') = x'(x_2)\), which indicates \(J_{x_1} \neq J_{x_2}\). Hence \(J\) is injective.

Conclusions

Summarizing the above proof, we arrive at the conclusion that \(J\) is an isometric isomorphism between \(X\) and \(J(X) \subset X''\).

Remark The key step in the above is during the proof of isometry, where a specific functional \(x'\) is firstly defined at a single point \(x_0 \in X\) with its value equal to \(\norm{x_0}_X\). Then its domain is extended to the span of \(x_0\) and further to the whole space \(X\) by using the Hahn-Banach theorem, which ensures the extension is both continuous and norm-preserving.

Evaluation map and reflexive space的更多相关文章

  1. Multiple address space mapping technique for shared memory wherein a processor operates a fault handling routine upon a translator miss

    Virtual addresses from multiple address spaces are translated to real addresses in main memory by ge ...

  2. freemarker导出带图片的word文档

    最近做一个关于文档导出功能, 顺便学习了下freemarker,做了个关于导出带图片的word文档,模板并没有写全,只是验证代码的正确性 这只是做一个小功能,故只做了后台代码关于导出的代码,并未与前台 ...

  3. [Swift]LeetCode770. 基本计算器 IV | Basic Calculator IV

    Given an expression such as expression = "e + 8 - a + 5" and an evaluation map such as {&q ...

  4. [LeetCode] Basic Calculator IV 基本计算器之四

    Given an expression such as expression = "e + 8 - a + 5" and an evaluation map such as {&q ...

  5. 770. Basic Calculator IV

    Given an expression such as expression = "e + 8 - a + 5" and an evaluation map such as {&q ...

  6. 10 The Go Programming Language Specification go语言规范 重点

    The Go Programming Language Specification go语言规范 Version of May 9, 2018 Introduction 介绍 Notation 符号 ...

  7. Procedural graphics architectures and techniques

    BACKGROUND The evolution of graphics rendering technology has led to the development of procedural t ...

  8. CartO

    Carto documentation The following is a list of properties provided in CartoCSS that you can apply to ...

  9. Vim配置文件

    转载 原文网址:http://www.cnblogs.com/ma6174/archive/2011/12/10/2283393.html 花了很长时间整理的,感觉用起来很方便,共享一下. 我的vim ...

随机推荐

  1. MySQL联结查询和子查询

    2018-2-24 16:18:12 星期六 今天需要统计一个运营活动的数据, 涉及三个表, 分组比较多 活动描述: 每个人可以领取多张卡片,  好友也可以赠送其卡片, 20或40张卡片可以兑换一个奖 ...

  2. 3-html 缩写-地址-文字方向-引用块-题注的格式

    HTML Quotation and Citation Elements Tag Description <abbr> Defines an abbreviation or acronym ...

  3. 自定义session,cookie

    第一种情况:没有设置缓存:执行相对应的setitem等方法进行,保存到字典里面 cookies_dic={}print(cookies_dic)class Session(): def __init_ ...

  4. winform中textbox提示框

    在winform中向textbox输入内容时下面有提示信息,效果如图所示: private void Form1_Load(object sender, EventArgs e) {     Auto ...

  5. Confluence 6 配置 简易信息聚合(RSS)

    一个 Confluence 的管理员可以配置下面的 RSS 特性: Confluence 针对 RSS 聚合返回的最大项目数量. Confluence 针对 RSS 聚合允许的最大时间周期. 上面两个 ...

  6. Confluence 6 PostgreSQL 创建数据库和数据库用户

    一旦你成功的安装了 PostgreSQL 数据库: 创建一个数据库用户,例如 confluenceuser. 你的新用户必须能够  创建数据库对象(create database objects) 和 ...

  7. SpringBoot多环境区分

    1.修改application.yml配置文件 spring: profiles: active: cppdy datasource: driver-class-name: com.mysql.jdb ...

  8. laravel 兜底路由

    在 Laravel 5.6 中,引入了兜底路由功能.所谓兜底路由,就是当路由文件中定义的所有路由都无法匹配用户请求的 URL 时,用来处理用户请求的路由,在此之前,Laravel 都会通过异常处理器为 ...

  9. kali linux 安装wps office

    1.下载wps for linux 版本 wget http://kdl.cc.ksosoft.com/wps-community/download/6757/wps-office_10.1.0.67 ...

  10. Linux----centos安装mysql

    第一步wget http://repo.mysql.com/mysql-community-release-el7-5.noarch.rpm 第二步rpm -ivh mysql-community-r ...