in my impression, the gradient descent is for finding the independent variable that can get the minimum/maximum value of an objective function. So we need an obj. function: \(\mathcal{L}\)

  • an obj. function: \(\mathcal{L}\)
  • The gradient of \(\mathcal{L}: 2x+2\)
  • \(\Delta x\) , The value of idependent variable needs to be updated: \(x \leftarrow x+\Delta x\)

1. the \(\mathcal{L}\) is a context function: \(f(x)=x^2+2x+1\)

how to find the \(x_0\) that makes the \(f(x)\) has the minimum value, via gradient descent?

Start with an arbitrary \(x\), calculate the value of \(f(x)\) :

import random
def func(x):
return x*x + 2*x +1
def gred(x): # the gradient of f(x)
return 2*x + 2 x = random.uniform(-10.0,10.0) #randomly pick a float in interval of (-10, 10)
# x = 10
print('x starts at:', x) y0 = func(x) #first cal
delta = 0.5 #the value of delta_x, each iteration
x = x + delta # === interation ===
for i in range(100):
print('i=',i)
y1 = func(x)
delta = -0.08*gred(x)
print(' delta=',delta)
if y1 > y0:
print(' y1>y0')
# if gred(x) is positive, the x should decrease.
# if gred(x) is negative, the x should increase.
else:
print(' y1<=y0')
# if gred(x) is positive, the x should increase.
# if gred(x) is negative, the x should decrease.
x = x+delta
y0 = y1
print(' x=', x, 'f(x)=', y1)

Let's disscuss how to determin the some_value in the psudo code above.

if \(y_1-y_0\) has a large positive difference, i.e. \(y1 >> y0\), the x should shift backward heavily. so the some_value can be a ratio of \((y_1-y_0)\times(-gradient)\) , Let's say, some_value: \(\lambda = r \times\) gred(x) , here, \(r=0.08\) is the step-size.

The basic gradient descent has many shortcomings which can be found by search the 'shortcoming of gd'.

Another problem of GD algorithm is , What if the \(\mathcal{L}\) does not have explicit expression of its gradient?

Stochastic Gradient Descent(SGD) is another GD algorithm.

The component and implementation of a basic gradient descent in python的更多相关文章

  1. (转)Introduction to Gradient Descent Algorithm (along with variants) in Machine Learning

    Introduction Optimization is always the ultimate goal whether you are dealing with a real life probl ...

  2. Logistic Regression and Gradient Descent

    Logistic Regression and Gradient Descent Logistic regression is an excellent tool to know for classi ...

  3. (转) An overview of gradient descent optimization algorithms

    An overview of gradient descent optimization algorithms Table of contents: Gradient descent variants ...

  4. 机器学习-随机梯度下降(Stochastic gradient descent)

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  5. An overview of gradient descent optimization algorithms

    原文地址:An overview of gradient descent optimization algorithms An overview of gradient descent optimiz ...

  6. 机器学习数学基础- gradient descent算法(上)

    为什么要了解点数学基础 学习大数据分布式计算时多少会涉及到机器学习的算法,所以理解一些机器学习基础,有助于理解大数据分布式计算系统(比如spark)的设计.机器学习中一个常见的就是gradient d ...

  7. flink 批量梯度下降算法线性回归参数求解(Linear Regression with BGD(batch gradient descent) )

    1.线性回归 假设线性函数如下: 假设我们有10个样本x1,y1),(x2,y2).....(x10,y10),求解目标就是根据多个样本求解theta0和theta1的最优值. 什么样的θ最好的呢?最 ...

  8. 梯度下降(Gradient Descent)小结

    在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.这里就对梯度下降法做一个完整的总结. 1. 梯度 在微 ...

  9. 机器学习基础——梯度下降法(Gradient Descent)

    机器学习基础--梯度下降法(Gradient Descent) 看了coursea的机器学习课,知道了梯度下降法.一开始只是对其做了下简单的了解.随着内容的深入,发现梯度下降法在很多算法中都用的到,除 ...

随机推荐

  1. Python学习笔记–Chapter 2

    1.字符串中添加制表符,可使用字符组合\t 2.字符串中添加换行符,可使用字符组合\n 3.字符串\n\t可以换到下一行,并且在开头添加一个制表符. 4.删除末尾空白,使用方法rstrip() 5.删 ...

  2. UT源码 105032014098

    package exam1; import java.util.Scanner; public class test01 { static String nextDate(int year,int m ...

  3. 爬虫模块介绍--Beautifulsoup (解析库模块,正则)

    Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库.它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式.Beautiful Soup会帮你节省数小时 ...

  4. cisco4507引擎模式切换

    1.redu     mode sso2.wri 可能存在的问题:无法切换至sso原因:ios镜像版本不一致 解决方法: 1. copy bootflash: slavebootflash: 2. d ...

  5. Spark菜鸟记录

    1.RDD[(k,v)] join()优化,join之前会对两个RDD的key做hash,通过网络把相同hash值的数据传到同一个节点,因此对多次join的RDD 做预分区与持久化可提高效率. map ...

  6. sqlite 使用 cte 及 递归的实现示例

    1.多级 cte 查询示例. with cte as ( select pageid from cm_bookpage ) , cte2 as ( as content from cte ) sele ...

  7. 深入理解CSS系列(二):为什么height:100%不生效?

    对于height属性,如果父元素height为auto,只要子元素在文档流中(即position不等于fixed或者absolute),其百分比值完全就被忽略了.这是什么意思呢?首先来看个例子,比如, ...

  8. neo4j通过LOAD CSV导入结点和关系

    1.neo4j默认的导入入口是:安装路径/import,所以要将csv文件放在import目录下,像下面这样: 2.导入后中文乱码: 因为neo4j是utf-8的,而CSV默认保存是ANSI的,需要用 ...

  9. 浏览器端使用javascript调用腾讯翻译api

    最近在学习的小玩意,发现腾讯的文档十分坑爹,里面有很多错误的指示. 不过腾讯的机器翻译还是很牛的,我觉得翻译水准比谷歌好很多. 腾讯的机器翻译貌似在试用阶段,不收费,用QQ或微信登录即可申请使用. 首 ...

  10. linux tee

    tee 功能说明:读取标准输入的数据,并将其内容输出成文件. 语 法:tee [-ai][--help][--version][文件...] 补充说明:tee指令会从标准输入设备读取数据,将其内容输出 ...