[luogu2503][HAOI2006]均分数据【模拟退火】
题目描述
已知N个正整数:A1、A2、……、An 。今要将它们分成M组,使得各组数据的数值和最平均,即各组的均方差最小。均方差公式如下:

分析
模拟退火学习笔记:https://www.cnblogs.com/chhokmah/p/10529114.html
万物皆可颓火,我们首先将初始的答案当做一半一半的答案,然后我们随机化抽取两个部分的数据。根据题目中的描述,因为两个组别之间数据个数只能是差一,那么差不多就是一半一半的情况。那么我们就只需要分块两部分,然后随机交换,如果两个数据交换之后能使答案能更优,那么就交换,如果不能让我们的答案变得更加优,那么就让随机概率,这个概率很明显是越到后面交换的概率越小,那么我们就是exp(delta) < t * Rand(),那么就交换,否则就不交换。
模拟退火的精髓还是这个调参,这道题目我一遍A掉了,感觉有一点欧皇。
我给出一个比较优秀的随机种子,是ouhuang和6666666的取模,就是15346301。
ac代码
#include <bits/stdc++.h>
#define ms(a,b) memset(a, b, sizeof(a))
#define db double
using namespace std;
inline char gc() {
static char buf[1 << 16], *S, *T;
if (S == T) {
T = (S = buf) + fread(buf, 1, 1 << 16, stdin);
if (T == S) return EOF;
}
return *S ++;
}
template <typename T>
inline void read(T &x) {
T w = 1;
x = 0;
char ch = gc();
while (ch < '0' || ch > '9') {
if (ch == '-') w = -1;
ch = gc();
}
while (ch >= '0' && ch <= '9') x = (x << 1) + (x << 3) + (ch ^ 48), ch = gc();
x = x * w;
}
template <typename T>
void write(T x) {
if (x < 0) putchar('-'), x = -x;
if (x > 9) write(x / 10);
putchar(x % 10 + 48);
}
#define N 305
db ans = 1e30, ave = 0;
int sum[N], pos[N], a[N];
int n, m;
void SA(db T){
ms(sum, 0);
for (int i = 1; i <= n; i ++) {
pos[i] = rand() % m + 1;
sum[pos[i]] += a[i];
}
db res = 0;
for (int i = 1; i <= m; i ++)
res += (1.0 * sum[i] - ave) * (1.0 * sum[i] - ave);
while (T > 1e-4) {
int t = rand() % n + 1, x = pos[t], y;
if (T > 500) y = min_element(sum + 1, sum + 1 + m) - sum;
else y = rand() % m + 1;
if (x == y) continue;
db tmp = res;
res -= (sum[x] - ave) * (sum[x] - ave);
res -= (sum[y] - ave) * (sum[y] - ave);
sum[x] -= a[t], sum[y] += a[t];
res += (sum[x] - ave) * (sum[x] - ave);
res += (sum[y] - ave) * (sum[y] - ave);
if (res < tmp || rand() % 10000 <= T) pos[t] = y;
else sum[x] += a[t], sum[y] -= a[t], res = tmp;
ans = min(ans, res);
T *= 0.98;
}
}
int main() {
srand(20040127);
read(n); read(m);
for (int i = 1; i <= n; i ++) {
read(a[i]);
ave += 1.0 * a[i];
}
ave /= 1.0 * m;
for (int i = 1; i <= 1500; i ++) SA(10000);
printf("%.2lf\n", sqrt(ans / m));
return 0;
}
[luogu2503][HAOI2006]均分数据【模拟退火】的更多相关文章
- bzoj2428 [HAOI2006]均分数据 模拟退火
[HAOI2006]均分数据 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 3434 Solved: 1091[Submit][Status][Dis ...
- 洛谷P2503 [HAOI2006]均分数据(模拟退火)
题目描述 已知N个正整数:A1.A2.…….An .今要将它们分成M组,使得各组数据的数值和最平均,即各组的均方差最小.均方差公式如下: 输入输出格式 输入格式: 输入文件data.in包括: 第一行 ...
- BZOJ2428[HAOI2006]均分数据——模拟退火
题目描述 已知N个正整数:A1.A2.…….An .今要将它们分成M组,使得各组数据的数值和最平均,即各组的均方差最小.均方差公式如下: ,其中σ为均方差,是各组数据和的平均值,xi为第i组数据的数值 ...
- HAOI2006 均分数据 [模拟退火]
题目描述 已知N个正整数:A1.A2.--.An .今要将它们分成M组,使得各组数据的数值和最平均,即各组的均方差最小.均方差公式如下: 输入输出格式 输入格式: 输入文件data.in包括: 第一行 ...
- BZOJ 2428 JZYZOJ1533 : [HAOI2006]均分数据 模拟退火 随机化
http://www.lydsy.com/JudgeOnline/problem.php?id=2428 http://172.20.6.3/Problem_Show.asp?id=1533 http ...
- P2503 [HAOI2006]均分数据
P2503 [HAOI2006]均分数据 模拟退火+dp (不得不说,我今天欧气爆棚) 随机出1个数列,然后跑一遍dp统计 #include<iostream> #include<c ...
- bzoj2428: [HAOI2006]均分数据
模拟退火.挺好理解的.然后res打成了ans一直WA一直WA...!!!一定要注意嗷嗷嗷一定要注意嗷嗷嗷一定要注意嗷嗷嗷. 然后我就一直卡一直卡...发现最少1800次的时候就可以出解了.然后我就去调 ...
- 洛谷 P2503 [HAOI2006]均分数据 随机化贪心
洛谷P2503 [HAOI2006]均分数据(随机化贪心) 现在来看这个题就是水题,但模拟赛时想了1个小时贪心,推了一堆结论,最后发现贪心做 不了, 又想了半个小时dp 发现dp好像也做不了,在随机化 ...
- bzoj 2428: [HAOI2006]均分数据 随机化
2428: [HAOI2006]均分数据 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
随机推荐
- Django admin参数配置
admin参数配置 一. admin 启动 admin: Django的后台数据管理的web版本 针对Food表,url: http://127.0.0.1:8000/admin/app02/food ...
- Vue基础(ES6)
起步 1.扎实的HTML/CSS/Javascript基本功,这是前置条件. 2.不要用任何的构建项目工具,只用最简单的<script>,把教程里的例子模仿一遍,理解用法.不推荐上来就 ...
- 01-VMware-workstation14安装
VMware-workstation14安装步骤: 首先现在虚拟机wmware,我现在的版本是:VMware-workstation-full-14.1.1.28517.exe 到处这里就安装完成: ...
- 解决mysql1336
1.mysql字符集与插入数据字符集不匹配 USE 数据库名称SHOW VARIABLES LIKE 'character%'SET character_set_server=utf8;SET cha ...
- PAT L2-020 功夫传人
https://pintia.cn/problem-sets/994805046380707840/problems/994805059118809088 一门武功能否传承久远并被发扬光大,是要看缘分 ...
- centos 7 aufs
Docker storage drivers | Docker Documentationhttps://docs.docker.com/storage/storagedriver/select-st ...
- VS如何在调试时进入到dll文件
背景: 项目A:用C#写的一个类库文件 项目B:引用项目A的dll文件,完成编码,也是C#编写的. 需求:怎么能在调试的时候,调试断点能够从项目B中进入项目A中的代码. 解决办法就是: 假设,项 ...
- Js中instanceof 的用法
在 JavaScript 中,判断一个变量的类型尝尝会用 typeof 运算符,在使用 typeof 运算符时采用引用类型存储值会出现一个问题,无论引用的是什么类型的对象,它都返回 “object”. ...
- 如何在TypeScript中使用第三方JavaScript框架
一.安装typings 使用npm全局安装typings :npm install -g typings 安装成功. 二,搜索资源,支持模糊搜索:typings search base64 三.安装t ...
- 6s ios9.0平台 微信小程序的fixed定位兼容性问题
如果不设置top和left的话 就会出现不显示问题