【BZOJ4784】[ZJOI2017]仙人掌(Tarjan,动态规划)
【BZOJ4784】[ZJOI2017]仙人掌(Tarjan,动态规划)
题面
题解
显然如果原图不是仙人掌就无解。
如果原图是仙人掌,显然就是把环上的边给去掉,变成若干森林连边成为仙人掌的方案数。
那么对于一棵树而言,考虑其变成仙人掌的方案数。
设\(a_i\)表示匹配\(i\)个儿子的方案数,显然转移时\(a_i=a_{i-1}+(i-1)*a_{i-2}\),即考虑新加入的儿子是匹配另外一个儿子还是不管。
设\(f_u\)表示节点\(u\)的子树匹配成仙人掌的方案数,这里要考虑\(x\)到其父亲的边。
那么对于每个点的转移就是考虑其所有儿子的边的匹配问题,显然假设儿子个数为\(d\)的话,那么\(f_u=a_d\prod_{v,(u,v)\in E}f_v\)。
然后这个玩意真的要\(dp\)吗。。。。
就是\(\prod a_{degree_i}\)。所以求求每个点的度数就好了。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 1000100
#define MOD 998244353
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next;}e[MAX<<2];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int n,m,a[MAX],mxn=1;
bool vis[MAX],chk;
int dfn[MAX],low[MAX],G[MAX],gr,tim;
bool ins[MAX];int S[MAX],top;
void init(int n)
{
for(int i=1;i<=n;++i)vis[i]=false,h[i]=dfn[i]=low[i]=G[i]=0;
for(int i=mxn+1;i<=n;++i)a[i]=(a[i-1]+1ll*(i-1)*a[i-2])%MOD;
mxn=max(mxn,n);cnt=1;tim=gr=0;chk=true;
}
void Tarjan(int u,int ff)
{
ins[u]=true;S[++top]=u;dfn[u]=low[u]=++tim;
bool ret=false;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;
if(!dfn[v])
{
Tarjan(v,u),low[u]=min(low[u],low[v]);
if(low[v]<dfn[u])ret?chk=false:ret=true;
}
else if(ins[v])
{
low[u]=min(low[u],dfn[v]);
if(low[v]<dfn[u])ret?chk=false:ret=true;
}
}
if(dfn[u]==low[u])
{
int v;++gr;
do{v=S[top--];ins[v]=false;G[v]=gr;}while(u!=v);
}
}
int ans,size[MAX];
void dfs(int u,int ff)
{
int son=ff!=0;vis[u]=true;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff||G[v]==G[u])continue;
++son;dfs(v,u);
}
ans=1ll*ans*a[son]%MOD;
}
int Work()
{
for(int i=1,u,v;i<=m;++i)u=read(),v=read(),Add(u,v),Add(v,u);
for(int i=1;i<=n;++i)if(!dfn[i])Tarjan(i,0);
if(!chk)return 0;ans=1;
for(int i=1;i<=n;++i)if(!vis[i])dfs(i,0);
return ans;
}
int main()
{
int T=read();a[0]=1;a[1]=1;
while(T--)
{
n=read();m=read();init(n);
printf("%d\n",Work());
}
}
【BZOJ4784】[ZJOI2017]仙人掌(Tarjan,动态规划)的更多相关文章
- [BZOJ4784][ZJOI2017]仙人掌(树形DP)
4784: [Zjoi2017]仙人掌 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 312 Solved: 181[Submit][Status] ...
- 2019.02.07 bzoj4784: [Zjoi2017]仙人掌(仙人掌+树形dp)
传送门 题意:给一个无向连通图,问给它加边形成仙人掌的方案数. 思路: 先考虑给一棵树加边形成仙人掌的方案数. 这个显然可以做树形dp. fif_ifi表示把iii为根的子树加边形成仙人掌的方案数. ...
- BZOJ4784 ZJOI2017仙人掌(树形dp+dfs树)
首先考虑是棵树的话怎么做.可以发现相当于在树上选择一些长度>=2的路径使其没有交,同时也就相当于用一些没有交的路径覆盖整棵树. 那么设f[i]为覆盖i子树的方案数.转移时考虑包含根的路径.注意到 ...
- bzoj4784 [Zjoi2017]仙人掌
Description 如果一个无自环无重边无向连通图的任意一条边最多属于一个简单环,我们就称之为仙人掌.所谓简单环即不经过重复的结点的环. 现在九条可怜手上有一张无自环无重边的无向连通图,但是她觉得 ...
- 【BZOJ4316】小C的独立集(仙人掌,动态规划)
[BZOJ4316]小C的独立集(仙人掌,动态规划) 题面 BZOJ 题解 除了普通的动态规划以外,这题还可以用仙人掌的做法来做. 这里没有必要把圆方树给建立出来 \(Tarjan\)的本质其实就是一 ...
- 【BZOJ1023】仙人掌图(仙人掌,动态规划)
[BZOJ1023]仙人掌图(仙人掌,动态规划) 题面 BZOJ 求仙人掌的直径(两点之间最短路径最大值) 题解 一开始看错题了,以为是求仙人掌中的最长路径... 后来发现看错题了一下就改过来了.. ...
- UOJ#290. 【ZJOI2017】仙人掌 仙人掌,Tarjan,计数,动态规划,树形dp,递推
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ290.html 题解 真是一道好题! 首先,如果不是仙人掌直接输出 0 . 否则,显然先把环上的边删光. ...
- bzoj 4784: [Zjoi2017]仙人掌【tarjan+树形dp】
其实挺简单的但是没想出来---- 首先判断无解情况,即,一开始的图就不是仙人掌,使用tarjan判断如果一个点dfs下去有超过一个点比他早,则说明存在非简单环. 然后考虑dp,显然原图中已经属于某个简 ...
- uva 11324 The Largest Clique(图论-tarjan,动态规划)
Problem B: The Largest Clique Given a directed graph G, consider the following transformation. First ...
随机推荐
- PS提亮户外儿童照
(@摄影师延延)作品 调整完的图. 原图. 再看原图.好吧,这张照片明显欠曝了,蘑菇酱的小脸黑黑的.但是构图啊蘑菇酱的神情啊都不错捏.好在蘑菇妈是用raw格式拍,即刻Lightroom调整无压力. 1 ...
- 《梦断代码》Scott Rosenberg著(三)
开放与封闭之论: 程序源代码是商业软件公司最重要的资产,所以软件公司售卖二进制文件.这样也就意味着如果微软的软件产品出了问题,即便你是一个程序大牛也无法修复它.你只能等着微软来修正问题,因为只有微软程 ...
- 搭建RISC-V错误记录
错误:riscv64-unknown-elf-gcc: Command not found 解决办法:将riscv64-unknown-elf-gcc文件拷贝到根目录的/bin目录下. 原因是make ...
- java的static与C#的static的异同
static static同样可以用在类.方法.变量上面,但是在java和C#中所表示的意思完全不同,我个人的总结是C#中的静态和非静态是有一个明显的分界的,静态的是属于类级别的,而非静态的是属于实例 ...
- 五句话搞定JavaScript作用域(ES5)
JavaScript的作用域一直以来是前端开发中比较难以理解的知识点,对于JavaScript的作用域主要记住几句话,走遍天下都不怕... 一.“JavaScript中无块级作用域” 在Java或C# ...
- Nginx安装- CentOS7
1.确认是否具备安装环境 g++ -v 如果不打印则不具备. 解决办法:联网执行如下命令 yum install gcc yum install gcc-c++ 2.需要材料 pcre-8.37.t ...
- 为linux主机增加file description
在benchmarked写的服务器的时候就遇到了too many file open 这个报错. 由于遇到过很多次了,所以知道应该是单机fd打满了. 首先来看看 机器最多支持多少fd cat /pro ...
- 当应用程序不是以UserInteractive 模式运行时显示模式对话框或窗体
最近在做一个WCF程序的时候,WCF程序老是弹出一个错误“当应用程序不是以UserInteractive 模式运行时显示模式对话框或窗体是无效操作.请指定ServiceNotification或Def ...
- 如何在集合中巧用Where来查找相关元素
在我们的项目中我们经常会查找一些集合中的重要元素,当然我们可以使用常规的foreach循环和if语句来查询,但是我们要学会使用System.Linq命名空间下面的静态类Enumerable下面的静态方 ...
- vue 條件語句
條件判斷使用v-if.v-else-if.v-else. v-show