从已知的一些函数依赖,可以推导出另外一些函数依赖,这就需要一系列推理规则,这些规则常被称作“Armstrong 公理”。

设U 是关系模式R 的属性集,F 是R 上成立的只涉及U 中属性的函数依赖集。函数依赖的推理规则有以下三条:

自反律:若属性集Y 包含于属性集X,属性集X 包含于U,则X→Y 在R 上成立。(此处X→Y是平凡函数依赖)

增广律:若X→Y 在R 上成立,且属性集Z 包含于属性集U,则XZ→YZ 在R 上成立。

传递律:若X→Y 和 Y→Z在R 上成立,则X →Z 在R 上成立。

其他的所有函数依赖的推理规则可以使用这三条规则推导出。

函数依赖:FD(function dependency),

设有关系模式R(U),X,Y是U的子集, r是R的任一具体关系,

如果对r的任意两个元组t1,t2,由t1[X]=t2[X]导致t1[Y]=t2[Y],

则称 X函数决定Y,或Y函数依赖于X,记为X→Y。X→Y为模式R的一个函数依赖。

函数依赖的逻辑蕴涵

设F是关系模式R的一个函数依赖集,X,Y是R的属性子集,

如果从F中的函数依赖能够推出X→Y,则称F逻辑蕴涵X→Y,记为F|=X→Y。

部分函数依赖

即局部依赖,对于一个函数依赖W→A,

如果存在X W(X包含于W)有X→A成立, 那么称W→A是局部依赖,否则称W→A为完全依赖。

完全函数依赖:见上。 

传递依赖:在关系模式中,如果Y→X,X→A,且X Y(X不决定Y), A X(A不属于X),那么称Y→A是传递依赖。

函数依赖集F的闭包F+: 被逻辑蕴涵的函数依赖的全体构成的集合,称为F的闭包(closure),记为F+

Armstrong公理的更多相关文章

  1. SQL Server 进阶 01 数据库的设计

    SQL Server 进阶 01 数据库的设计 本篇目录 课程内容回顾及介绍 为什么需要规范的数据库设计 设计数据库的步骤 绘制E-R(实体-关系)图 实体-关系模型 如何将E-R图转换为表 数据规范 ...

  2. 每天一套题打卡|河南省第十一届ACM/ICPC

    A 计划日 题意:已知李明在YYYY年MM月DD日星期W订了学习计划,现在想看看李明N天后的完成情况和个人总结,你能告诉我那天的日期和星期几吗? 模拟日期计算: 计算星期可以用基姆拉尔森公式 //中国 ...

  3. 求XF+闭包(第十一届河南省省赛真题)

    题目描述 如何设计一个好的数据库不仅仅是一个理论研究问题,也是一个实际应用问题.在关系数据库中不满足规范化理论的数据库设计会存在冗余.插入异常.删除异常等现象. 设R(U)是一个关系模式,U={ A1 ...

  4. 【河南省第十一届ACM大学生程序设计竞赛-D】.求XF+闭包

       如何设计一个好的数据库不仅仅是一个理论研究问题,也是一个实际应用问题.在关系数据库中不满足规范化理论的数据库设计会存在冗余.插入异常.删除异常等现象. 设R(U)是一个关系模式,U={ A1,A ...

  5. 数据库SQL---范式

    1.数据冗余导致的问题:冗余存储.更新异常.插入异常.删除异常. 2.函数依赖:一种完整性约束. 在关系模式r(R)中,α属于R,β属于R. 1)α函数确定β(β函数依赖于α):记作α→β,对于任意合 ...

  6. HITsz 数据库笔记

    这是 HITsz 数据库笔记,欢迎到我的 GitHub 上查看,有笔记说明和源码,作业和实验报告,希望对你有帮助 博客园显示图片异常 数据库基本概念 数据抽象 通过抽象来对用户屏蔽复杂性,以简化用户与 ...

  7. Armstrong数

    题目描述 在三位的整数中,例如153可以满足1^3 + 5^3 + 3^3 = 153,这样的数称之为Armstrong数.将所有的Armstrong数按小到大排序,试写出一程序找出指定序号的三位Ar ...

  8. NewtonPrincipia --- 公理或运动的定律 --- 系理二

    NewtonPrincipia --- 公理或运动的定律 --- 系理二 自然哲学的数学原理>公理或运动的定律>系理II 平行四边形ABCD,那么:直接的力AD由任意的力AB和BD合成,直 ...

  9. 《A First Course in Probability》-chaper2-概率论公理

    概率论自身有一套很深的理论体系,读过<几何原本>的读者会知道,伟大的欧几里得之所以伟大,是因为它基于几条最基本的公理,推导除了整个欧式几何学的理论体系,同样,在概率论这里,一切的推导都是源 ...

随机推荐

  1. Y7000安装驱动显卡问题

    整体 https://blog.csdn.net/la9881275/article/details/86720752 详细 https://blog.csdn.net/luteresa/articl ...

  2. 微信硬件平台(八) 4 ESP8266通过微信公众号给用户推送消息

    https://api.weixin.qq.com/cgi-bin/message/custom/send?access_token=自己申请微信公众号的TOKEN 输出结果:  由于aRDUINO串 ...

  3. Spring Security(十四):5.4 Authorize Requests

    Our examples have only required users to be authenticated and have done so for every URL in our appl ...

  4. Sharding-JDBC实践(一)简介

    转载自:ShardingSphere官网 目录 一.介绍 1. Sharding-JDBC 2. Sharding-Proxy 3. Sharding-Sidecar(TBD) 4. 混合架构 二.功 ...

  5. 工具篇-Json处理

    1. @JsonProperty和@SerializedName注解 使用场景 将一个json格式的字符串转换成某个java对象,或者将一个java对象转换成json格式的字符串时,如果json字符串 ...

  6. Maven入门指南⑦:Maven的生命周期和插件

    一个完整的项目构建过程通常包括清理.编译.测试.打包.集成测试.验证.部署等步骤,Maven从中抽取了一套完善的.易扩展的生命周期.Maven的生命周期是抽象的,其中的具体任务都交由插件来完成.Mav ...

  7. My ajaxwrapper tool

    Until recently, when I write ajax call, always write like below: $.ajax({ type: "post", da ...

  8. Python网络爬虫实战:根据天猫胸罩销售数据分析中国女性胸部大小分布

    本文实现一个非常有趣的项目,这个项目是关于胸罩销售数据分析的.是网络爬虫和数据分析的综合应用项目.本项目会从天猫抓取胸罩销售数据,并将这些数据保存到SQLite数据库中,然后对数据进行清洗,最后通过S ...

  9. NLP之——Word2Vec详解

    2013年,Google开源了一款用于词向量计算的工具--word2vec,引起了工业界和学术界的关注.首先,word2vec可以在百万数量级的词典和上亿的数据集上进行高效地训练:其次,该工具得到的训 ...

  10. Centos 7 修改系统时区

    timedatectl status Local time: 四 2014-12-25 10:52:10 CST Universal time: 四 2014-12-25 02:52:10 UTC R ...