一 (0,1)标准化:

这是最简单也是最容易想到的方法,通过遍历feature vector里的每一个数据,将Max和Min的记录下来,并通过Max-Min作为基数(即Min=0,Max=1)进行数据的归一化处理:

python的代码实现:

#-*-coding:utf-8-*-
import numpy as np def MaxMinNormalization(x,Max,Min):
x = (x - Min) / (Max - Min);
return x; a = np.array([[1,2,3],[4,5,6]])
print(MaxMinNormalization(a,3,0))

  二 Z-score标准化:

  这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。

经过处理的数据符合标准正态分布,即均值为0,标准差为1,这里的关键在于复合标准正态分布,个人认为在一定程度上改变了特征的分布,关于使用经验上欢迎讨论,转化函数为:

这里一样,mu(即均值)用np.average(),sigma(即标准差)用np.std()即可.

  python的源码实现:

def Z_ScoreNormalization(x,mu,sigma):
x = (x - mu) / sigma;
return x; b = np.array([[1,2,3],[4,5,6]])
print(Z_ScoreNormalization(b,b.mean(),b.std()))

  三 Sigmoid函数

  Sigmoid函数是一个具有S形曲线的函数,是良好的阈值函数,在(0, 0.5)处中心对称,在(0, 0.5)附近有比较大的斜率而当数据趋向于正无穷和负无穷的时候,映射出来的值就会无限趋向于1和0.

个人非常喜欢的“归一化方法”,之所以打引号是因为我觉得Sigmoid函数在阈值分割上也有很不错的表现,根据公式的改变,就可以改变分割阈值,这里作为归一化方法,我们只考虑(0, 0.5)作为分割阈值的点的情况:

python 源码:

  

def sigmoid(X,useStatus):
if useStatus:
#return 1.0 / (1 + np.exp(-float(X)))
return 1.0 / (1 + np.exp(-X))
else:
return float(X) c = np.array([[1,2,3],[4,5,6]])
print(sigmoid(c,1))

  参考文档:

1 https://blog.csdn.net/sinat_36458870/article/details/79498302

几种归一化方法的概念及python实现的更多相关文章

  1. day-14 回归中的相关系数和决定系数概念及Python实现

    衡量一个回归模型常用的两个参数:皮尔逊相关系数和R平方 一.皮尔逊相关系数 在统计学中,皮尔逊相关系数( Pearson correlation coefficient),又称皮尔逊积矩相关系数(Pe ...

  2. Spark ML 几种 归一化(规范化)方法总结

    规范化,有关之前都是用 python写的,  偶然要用scala 进行写, 看到这位大神写的, 那个网页也不错,那个连接图做的还蛮不错的,那天也将自己的博客弄一下那个插件. 本文来源 原文地址:htt ...

  3. 再谈机器学习中的归一化方法(Normalization Method)

    机器学习.数据挖掘工作中,数据前期准备.数据预处理过程.特征提取等几个步骤几乎要花费数据工程师一半的工作时间.同时,数据预处理的效果也直接影响了后续模型能否有效的工作.然而,目前的大部分学术研究主要集 ...

  4. python中常用的九种预处理方法

    本文总结的是我们大家在python中常见的数据预处理方法,以下通过sklearn的preprocessing模块来介绍; 1. 标准化(Standardization or Mean Removal ...

  5. python字符串替换的2种有效方法

    python 字符串替换可以用2种方法实现:1是用字符串本身的方法.2用正则来替换字符串 下面用个例子来实验下:a = 'hello word'我把a字符串里的word替换为python1用字符串本身 ...

  6. 4种更快更简单实现Python数据可视化的方法

    数据可视化是数据分析或机器学习项目中十分重要的一环.通常,你需要在项目初期进行探索性的数据分析(EDA),从而对数据有一定的了解,而且创建可视化确实可以使分析的任务更清晰.更容易理解,特别是对于大规模 ...

  7. Python爬虫突破封禁的6种常见方法

    转 Python爬虫突破封禁的6种常见方法 2016年08月17日 22:36:59 阅读数:37936 在互联网上进行自动数据采集(抓取)这件事和互联网存在的时间差不多一样长.今天大众好像更倾向于用 ...

  8. Python队列的三种队列方法

    今天讲一下队列,用到一个python自带的库,queue 队列的三种方法有: 1.FIFO先入先出队列(Queue) 2.LIFO后入先出队列(LifoQueue) 3.优先级队列(PriorityQ ...

  9. Python+Selenium自动化-设置等待三种等待方法

    Python+Selenium自动化-设置等待三种等待方法   如果遇到使用ajax加载的网页,页面元素可能不是同时加载出来的,这个时候,就需要我们通过设置一个等待条件,等待页面元素加载完成,避免出现 ...

随机推荐

  1. LCA的两种写法

    第一种是离线的Tarjan算法 #include<cstdio> using namespace std; int rd(){ ,fl=;char ch=getchar(); ;}ch=g ...

  2. testXSS <img src="aa" onerror="javascript:alert('XSS');"/>

    adsa  </p><img src="aa" onerror="javascript:alert('XSS');"/><p> ...

  3. 摹客iDoc 新功能“柔性工作流”,让设计随需而动

    摹客iDoc推出了全新“柔性工作流”,让协作设计自由流动,随需而动. 更高效.更自由的协作方式,赶快告诉你的团队吧~ “柔性工作流” VS “普通工作流” 普通工作流往往是将很多东西混杂在一起,并施以 ...

  4. springboot无法加载oracle驱动终极解决

    .ctrl+shirt+s .找到 Maven: com.oracle:ojdbc6: .找到classes 下的路径C:\Users\Administrator\.m2\repository\com ...

  5. JAVA实训第二次作业

    一维数组的创建和遍历. 声明并创建存放4个人考试成绩的一维数组,并使用for循环遍历数组并打印分数.要求: (1) 首先按"顺序"遍历,即打印顺序为:从第一个人到第四个人: (2) ...

  6. sql语句性能优化

    需要的准备知识 1最左前缀匹配 mysql会一直向右匹配直到遇到范围查询(>.<.between.like)就停止匹配, 对于where条件 a = 1 and b> 2 and c ...

  7. 高斯混合模型(GMM) - 混合高斯回归(GMR)

    http://www.zhihuishi.com/source/2073.html 高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲 ...

  8. CUDA C

    一.CUDA结构 硬件:GPU(Graphics Processing Unit)   SM(Streaming Multiprocessor)     SP(Streaming Processor) ...

  9. Python从入门到精通之Seventh!

    函数浅析:可以减少代码重用,保持一致性,可扩展性,易维护性. 定义方法:def 函数名(形参):     '''功能注释'''      代码块 打印函数名时,会出现函数的内存地址.两个函数名相同时, ...

  10. 谷歌浏览器运行Flash

    最近有人问我谷歌浏览器的flash总是要点击手动运行才可以使用.看了很多网上很多教程,并没有比较好的解决方案. 自己找了相关资料后,找到了一个比较好的完整的.特此在这边放出来给大家使用. 新建记事本, ...