bzoj2560串珠子(子集dp)
铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子。现在铭铭想用绳子把所有的珠子连接成一个整体。
现在已知所有珠子互不相同,用整数1到n编号。对于第i个珠子和第j个珠子,可以选择不用绳子连接,或者在ci,j根不同颜色的绳子中选择一根将它们连接。如果把珠子看作点,把绳子看作边,将所有珠子连成一个整体即为所有点构成一个连通图。特别地,珠子不能和自己连接。
铭铭希望知道总共有多少种不同的方案将所有珠子连成一个整体。由于答案可能很大,因此只需输出答案对1000000007取模的结果。
Solution
神仙dp。
我们先令g[i]表示在i这个状态中,随意连边的方案数,这个可以轻松的搞出来。
然后我们再考虑从状态中减去不合法的,我们可以考虑枚举子集,把当前集合强行分成不连通的两个集合,这样的方案数就是f[s]*g[s^i].
为了避免算重复,我们需要从集合中找出一个固定点,强制让这个点在S集合中,这样就不会出现我们在g[s^i]中算了一遍后又在g[s]算了一遍。
Code
#include<iostream>
#include<cstdio>
#define N 22
using namespace std;
const int mod=;
long long a[N][N],f[<<],g[<<];
int n;
int main(){
scanf("%d",&n);
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)scanf("%lld",&a[i][j]);
int ma=(<<n)-;
for(int i=;i<=ma;++i){
g[i]=;
for(int j=;j<=n;++j)if(i&(<<j-))
for(int k=j+;k<=n;++k)if(i&(<<k-))
(g[i]*=(a[j][k]+))%=mod;
}
for(int i=;i<=ma;++i){
for(int S=i&(i-);S;S=i&(S-))
if(!((S^i)&(i&-i)))(f[i]+=(f[S]*g[S^i])%mod)%=mod;
f[i]=((g[i]-f[i])%mod+mod)%mod;
}
printf("%lld",f[ma]);
return ;
}
bzoj2560串珠子(子集dp)的更多相关文章
- bzoj2560串珠子——子集DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2560 转载: 很明显的状压dp 一开始写的dp可能会出现重复统计的情况 而且难以去重 假设 ...
- bzoj2560串珠子 状压dp+容斥(?)
2560: 串珠子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 515 Solved: 348[Submit][Status][Discuss] ...
- $bzoj2560$ 串珠子 容斥+$dp$
正解:容斥+$dp$ 解题报告: 传送门$QwQ$ $umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多 ...
- bzoj2560 串珠子 状压DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2560 题解 大概是这类关于无向图的联通性计数的套路了. 一开始我想的是这样的,考虑容斥,那么就 ...
- 2019.02.09 bzoj2560: 串珠子(状压dp+简单容斥)
传送门 题意简述:nnn个点的带边权无向图,定义一个图的权值是所有边的积,问所有nnn个点都连通的子图的权值之和. 思路: fif_ifi表示保证集合iii中所有点都连通其余点随意的方案数. gig ...
- [BZOJ2560]串珠子:状压DP+容斥原理
分析 为什么我去年6月做过这道题啊,估计当时抄的题解. 具体做法就是令\(f[S]\)表示保证连通点集\(S\)的方案数,\(g[S]\)表示不保证连通点集\(S\)的方案数. 容易想到: \[g[S ...
- bzoj2560 串珠子
Description 铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数1到n编号.对于第i个珠子和第j个珠子,可以选择不 ...
- 【题解】Bzoj2560串珠子
挺强的……容斥+状压DP.首先想到如果可以求出f[k],f[k]代表联通状态为k的情况下的合法方案数,则f[k] = g[k] - 非法方案数.g[k]为总的方案数,这是容易求得的.那么非法方案数我们 ...
- 题解-bzoj2560 串珠子
刚被教练数落了一通,心情不好,来写篇题解 Problem bzoj2560 题目简述:给定\(n\)个点的,每两个点\(i,j\)之间有\(c_{i,j}\)条直接相连的路(其中只能选一条或不选),问 ...
随机推荐
- HDU 2006 求奇数的乘积
http://acm.hdu.edu.cn/showproblem.php?pid=2006 Problem Description 给你n个整数,求他们中所有奇数的乘积. Input 输入数据包 ...
- mysql 5.7:show_compatibility_56
show_compatibility_56 - rudy gao - CSDN博客 https://blog.csdn.net/rudygao/article/details/50403107 [SO ...
- 给网站配置免费的HTTS证书
取经自思否:https://segmentfault.com/a/1190000015231137 https 的网站 搜索引擎 会优先收录,所以就抽时间记录下配置博客的过程,各种找资料,终于给我找到 ...
- asp.net core认证和授权的初始认识--claim、claimsidentity、claimsprincipal
Claim表示一个声明单元,它用来组成ClaimsIdentity.ClaimsIdentity表示一个证件,例如身份证,身份证上面的名字表示一个Claim,身份证号也表示一个Claim,所有这些Cl ...
- Oracle undo 表空间不可用
由于某次不小心操作,在切换表空间时没有成功,由于把undo的配置参数 undo_management值设置为MANUAL所以在启动数据库时没有报任何错误,但是给表插入数据时报错了,回滚段不可用的错误. ...
- [转帖]windows7/windows NT介绍
windows7/windows NT介绍 原文应该是IT168发布的 但是一直没找到 感觉看了之后 明白了很多 技术都是互相融合的 没有严格意义上的对立直说. Windows 7/Windows ...
- Python自动化运维之pexpect从入门到精通
1. 应用场景 模拟ssh, telnet远程登录, 模拟ftp文件上传 2. 安装 参考资料: <pexpect实例分析>https://www.ibm.com/developerwor ...
- Bootstrap之图片展示界面Demo2
代码:(使用模板引擎freemarker) <!DOCTYPE html> <html> <head> <title>图片</title> ...
- PHP超级全局变量、魔术变量和魔术函数
PHP超级全局变量(9个) $GLOBALS 储存全局作用域中的变量 $_SERVER 获取服务器相关信息 $_REQUEST 获取POST和GET请求的参数 $_POST 获取表单的POST请求参数 ...
- javap指令
栈和局部变量操作将常量压入栈的指令aconst_null 将null对象引用压入栈iconst_m1 将int类型常量-1压入栈iconst_0 将int类型常量0压入栈iconst_1 将int类型 ...