1 - 背景

KNN:k近邻,表示基于k个最近的邻居的一种机器学习方法。该方法原理简单,构造方便。且是一个非参数化模型。

KNN是一个“懒学习”方法,也就是其本身没有训练过程。只有在对测试集进行结果预测的时候才会产生计算。KNN在训练阶段,只是简单的将训练集放入内存而已。该模型可以看成是对当前的特征空间进行一个划分。当对测试集进行结果预测时,先找到与该测试样本最接近的K个训练集样本,然后基于当前是分类任务还是回归任务来做对应的处理。

KNN模型中有三个需要注意的地方:

1 - 距离度量的方法;

2 - K值的选择;

3 - 最后的判别决策规则。

如上面第三个,较为简单的判别决策规则为:

1)分类任务,那么找这K个训练集样本中出现次数最多的那个标签作为该测试样本标签,如下图:



图1.1 周老师西瓜书图10.1

2)回归任务,基于这K个训练集样本求均值,将其作为该测试集样本的结果。

不过KNN正是因为基于K个近邻进行测量的方法,所以其出问题也就在这里,因为该模型不适合作为高特征维度下的选择。因为它会遇到维数灾难的问题。举个例子,假如当前数据集是均匀分布在一个D维特征的空间中的,假设我们需要计算测试样本\(x\)周边一个区域上的类别标签密度,那么我们期望基于足够大的区域范围的数据才能得到合理的结果,那么对应的边界长度公式为:

\[e_D(f) = f^{1/D}
\]

也就是假如维度为\(D=10\),我们想评估10%的类别标签密度,那么每个维度上所需长度为\(e_{10}(0.1) = 0.8\),也就是我们需要每个维度上80%的长度范围内的数据,即使我们只需要估计1%的标签密度,我们每个维度上的长度也是\(e_{10}(0.01)=0.63\) 。



图2.2 mlapp上图1.16(b)

当维度为2,且样本能够无限多,那么该模型表现才是最好的(Cover and Hart 1967)。所以按道理,高维数据其实不适合KNN[]

不过幸运的是, 有一个效应可以在一定程度上抵消维度灾难, 那就是所谓的“ 非均匀性的祝福”(blessing of nonuniformity) 。
在大多数应用中, 样例在空间中并非均匀分布, 而是集中在一个低维流形manifold) 上面或附近。
这是因为数字图片的空间要远小于整个可能的空间。 学习器可以隐式地充分利用这个有效的更低维空间, 也可以显式地进行降维。[]

2 距离度量

KNN中最常用的方法就是欧式距离计算法,当然也有\(L_p\)距离和马氏距离等等。

假设样本的特征空间\(\chi\)是\(n\)维实数的向量空间\(\bf R^n\),\(x_i,x_j\in\chi\),$x_i=(x_i^{(1)}, x_i^{(2)}, ..., x_i^{(n)} ) \(,\)x_j=(x_j{(1)},x_j{(2)},...,x_j^{(n)})\(,那么\)x_i,x_j\(的\)L_p$距离定义为:

\[L_p^{(x_i,x_j)}=(\sum_{l=1}^n|x_i^{l}-x_j^{l}|^p)^{\frac{1}{p}}
\]

这里\(p\geq1\),

当\(p=2\)时,称为欧式距离;

当\(p=1\)时,称为曼哈顿距离;

当\(p=\infty\)时,是各个坐标距离的最大值,即:

\[L_\infty(x_i,x_j)={max}_l|x_i^{(l)}-x_j^{(l)}|
\]



图2.1 李航统计学习方法图3.2

上图为在2维情况下到原点的距离为\(L_p=1\)的点构成的范围图

3 K值选取

K值的选择会对KNN模型的结果产生重大影响。这就是一个模型选择问题。

模型选择:假设当前是一个KNN回归问题。现在是需要对点\(x_0\)进行\(\hat f_k(x_0)\)拟合,假设该样本来自函数\(Y=f(X)+\epsilon\), 这里\(E(\epsilon)=0\), 且\(Var(\epsilon)=\sigma^2\)。为了简化问题,假设训练样本中\(x_i\)的值是固定的,那么在测试样本点\(x_0\)的期望预测误差也叫做测试或泛化误差,如:

\[\begin{eqnarray}
EPE_k^{(x_0)}
&=& E[(Y-\hat f_k(x_0))^2|X=x_0]\\
&=& \sigma^2+[Bias^2(\hat f_k(x_0))+Var(\hat f_k(x_0))]\\
&=& \sigma^2+[f(x_0)-\frac{1}{k}\sum_{l=1}^kf(x(l))]^2+\frac{\sigma^2}{k}
\end{eqnarray}\]

第一项叫做不可避免的误差,是我们不可控制的,第二项和第三项是我们能够控制的,分别对应着模型的偏置和方差。偏置随着K变大而变大,方差随着K变大而变小。即K越大,模型越简单,K越小,模型越复杂:



图2.2 esl书上的图2.11

4 搜索优化

实现KNN模型时,主要考虑的还有个问题是如何对训练集的样本点进行快速的K近邻搜索。当特征空间维度太大,或者训练集样本点很多的时候特别重要。最基础的搜索方法就是线性搜索了,可想而知每个测试样本在比较时,都需要去计算一遍训练集的所有样本。效率着实不高。所以才需要量身定做的数据结构搜索方法。

4.1 - KD树

见这里

4.2 - Ball树

(待续)

参考资料:

[] Machine Learning A Probabilistic Perspective

[] 李航,统计学习方法

[] The Elements of Statistical Learning Data Mining, Inference, and Prediction (Second Edition)

[] Pedro Domingos,A Few Useful Things to Know About Machine Learning

[] 以叶子为数据的http://www.cnblogs.com/lysuns/articles/4710712.html

[] http://blog.csdn.net/likika2012/article/details/39619687

KNN-笔记(1)的更多相关文章

  1. KNN笔记

    KNN笔记 先简单加载一下sklearn里的数据集,然后再来讲KNN. import numpy as np import matplotlib as mpl import matplotlib.py ...

  2. 机器学习实战笔记(Python实现)-01-K近邻算法(KNN)

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  3. 第2章KNN算法笔记_函数classify0

    <机器学习实战>知识点笔记目录 K-近邻算法(KNN)思想: 1,计算未知样本与所有已知样本的距离 2,按照距离递增排序,选前K个样本(K<20) 3,针对K个样本统计各个分类的出现 ...

  4. opencv2.4.13+python2.7学习笔记--使用 knn对手写数字OCR

    阅读对象:熟悉knn.了解opencv和python. 1.knn理论介绍:算法学习笔记:knn理论介绍 2. opencv中knn函数 路径:opencv\sources\modules\ml\in ...

  5. 机器学习笔记(5) KNN算法

    这篇其实应该作为机器学习的第一篇笔记的,但是在刚开始学习的时候,我还没有用博客记录笔记的打算.所以也就想到哪写到哪了. 你在网上搜索机器学习系列文章的话,大部分都是以KNN(k nearest nei ...

  6. 学习笔记之k-nearest neighbors algorithm (k-NN)

    k-nearest neighbors algorithm - Wikipedia https://en.wikipedia.org/wiki/K-nearest_neighbors_algorith ...

  7. 机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN)

    机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源 ...

  8. kNN算法笔记

    kNN算法笔记 标签(空格分隔): 机器学习 kNN是什么 kNN算法是k-NearestNeighbor算法,也就是k邻近算法.是监督学习的一种.所谓监督学习就是有训练数据,训练数据有label标好 ...

  9. retrival and clustering: week 2 knn & LSH 笔记

    华盛顿大学 <机器学习> 笔记. knn k-nearest-neighbors : k近邻法 给定一个 数据集,对于查询的实例,在数据集中找到与这个实例最邻近的k个实例,然后再根据k个最 ...

  10. 【cs231n作业笔记】一:KNN分类器

    安装anaconda,下载assignment作业代码 作业代码数据集等2018版基于python3.6 下载提取码4put 本课程内容参考: cs231n官方笔记地址 贺完结!CS231n官方笔记授 ...

随机推荐

  1. vue.js及项目实战[笔记]— 03 vue.js插件

    一. vue补充 1. 获取DOM元素 救命稻草,document.querySelector 在template中标示元素`ref = "xxx" 在要获取的时候,this.$r ...

  2. 系统调用fork()在powerpc上的源码分析

    总结一句话:系统调用的本质,通过sc指令触发异常,完成用户态到内核的转换. 展开一些:应用程序调用fork(),fork()是一个glibc函数,该函数的最底层调用sc指令,触发cpu异常,从而完成从 ...

  3. MyEclipse TestNG插件安装与配置

    MyEclipse TestNG插件安装与配置   by:授客 QQ:1033553122 测试环境 jdk1.8.0_121 myeclipse-10.0-offline-installer-win ...

  4. Android为TV端助力 自定义动画

    android自定义动画注意是继承Animation,重写里面的initialize和applyTransformation,在initialize方法做一些初始化的工作,在applyTransfor ...

  5. Android代码书写规范

    1.资源文件命名规则2.类名文件命名规则3.尽量少用枚举4.public方法.重要逻辑.主要类结构体必须注释,其他部分可自定注释5.提交代码必须描述清楚修改内容,如果一次提交内容过多,拆分功能进行多次 ...

  6. slice()和subString()

    substring() 方法用于提取字符串中介于两个指定下标之间的字符.slice()返回一个子片段,对原先的string没有影响,与subString的区别是,还可以用负数当参数,相当于是lengt ...

  7. NoHttp封装--06 NoHttp之队列、队列优先级

    public class Main { /** * 程序入口 */ public void start() { // 第一种,先进先出的队列 // YolandaLinkedQueue queue = ...

  8. C# Params的使用

    using System; namespace Params { class Program { static void Main(string[] args) { PrintMany("H ...

  9. mysql之代码执行结构

    本文内容: 什么是代码执行结构 顺序结构 分支结构 循环结构 首发日期:2018-04-18 什么是代码执行结构: 这里所说的代码执行结构就是多条sql语句的执行顺序. 代码执行结构主要用于触发器.存 ...

  10. ELK的sentinl告警配置详解

    背景 sentinl的监控&告警是通过watch实现的. 一.Watch Execution 执行开始的时候, watcher为watch创建watch执行上下文. 执行上下文提供脚本和模板, ...