传送门

https://www.cnblogs.com/violet-acmer/p/9852294.html

题意:

  有两颗苹果树,在每一时刻只有其中一棵苹果树会掉苹果,而Bessie可以在很短的时间内在两个苹果树间切换,但每一时刻只能切换一下;

  求在1~T时刻,Bessie在最多可以切换W次的前提下最多可以获得多少苹果?

题解:

  定义变量dp[ i ][ j ] : 前 i 时刻,移动 j 步所获得的最大的苹果数量;

  据此写出状态转移方程:

  如何判断在i处是否的到苹果呢?

  ①如果dp[i-1][ j-1]为偶数,那么在 i 处移动之前,Bessie应该在 2 号苹果树下,因为在 i 处移动了,Bessie是在 1 号苹果树下等待 i 时刻的苹果

   反之,Bessie是在 2 号苹果树下等待 i 时刻的苹果。

  ②如果dp[i-1][ j ]为偶数,且Bessie在 i 时刻并没有移动,所以Bessie是在 2 号苹果树下等待 i 时刻的苹果

   反之,Bessie是在 1 号苹果树下等待 i 时刻的苹果。

  poj维护中............之前交的代码本地没保存,现在不想写了,明天看看poj还能登陆吗。。。。。啊啊啊啊

AC代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
const int maxn=1e3+; int T,W;
int tree[maxn];//tree[i]=1/2 : i时刻果树1/2掉苹果
int dp[maxn][]; int inOne(int i){//判断i时刻果树1是否掉苹果
return tree[i] == ? :;
}
int inTwo(int i){//判断i时刻果树2是否掉苹果
return tree[i] == ? :;
}
int walk(int i,int j)//在i时刻移动
{
if((j-)&)
return dp[i-][j-]+inOne(i);
return dp[i-][j-]+inTwo(i);
}
int noWalk(int i,int j)//在i时刻不移动
{
if(j&)
return dp[i-][j]+inTwo(i);
return dp[i-][j]+inOne(i);
}
void Solve()
{
mem(dp,);
for(int i=;i <= T;++i)//i时刻
for(int j=;j <= W;++j)//前i时刻共移动j步
if(j == )
dp[i][j]=dp[i-][j]+inOne(i);
else
dp[i][j]=max(walk(i,j),noWalk(i,j));
printf("%d\n",*max_element(dp[T]+,dp[T]+W+));
}
int main()
{
scanf("%d%d",&T,&W);
for(int i=;i <= T;++i)
scanf("%d",tree+i);
Solve();
}

poj 2385 Apple Catching(记录结果再利用的动态规划)的更多相关文章

  1. poj 2385 Apple Catching 基础dp

    Apple Catching   Description It is a little known fact that cows love apples. Farmer John has two ap ...

  2. POJ 2385 Apple Catching【DP】

    题意:2棵苹果树在T分钟内每分钟随机由某一棵苹果树掉下一个苹果,奶牛站在树#1下等着吃苹果,它最多愿意移动W次,问它最多能吃到几个苹果.思路:不妨按时间来思考,一给定时刻i,转移次数已知为j, 则它只 ...

  3. POJ 2385 Apple Catching

    比起之前一直在刷的背包题,这道题可以算是最纯粹的dp了,写下简单题解. 题意是说cows在1树和2树下来回移动取苹果,有移动次数限制,问最后能拿到的最多苹果数,含有最优子结构性质,大致的状态转移也不难 ...

  4. poj 2385 Apple Catching(dp)

    Description It and ) in his field, each full of apples. Bessie cannot reach the apples when they are ...

  5. POJ 2385 Apple Catching ( 经典DP )

    题意 : 有两颗苹果树,在 1~T 的时间内会有两颗中的其中一颗落下一颗苹果,一头奶牛想要获取最多的苹果,但是它能够在树间转移的次数为 W 且奶牛一开始是在第一颗树下,请编程算出最多的奶牛获得的苹果数 ...

  6. POJ - 2385 Apple Catching (dp)

    题意:有两棵树,标号为1和2,在Tmin内,每分钟都会有一个苹果从其中一棵树上落下,问最多移动M次的情况下(该人可瞬间移动),最多能吃到多少苹果.假设该人一开始在标号为1的树下. 分析: 1.dp[x ...

  7. POJ 2385 Apple Catching(01背包)

    01背包的基础上增加一个维度表示当前在的树的哪一边. #include<cstdio> #include<iostream> #include<string> #i ...

  8. 记录结果再利用的"动态规划"之背包问题

    参考<挑战程序设计竞赛>p51 https://www.cnblogs.com/Ymir-TaoMee/p/9419377.html 01背包问题 问题描述:有n个重量和价值分别为wi.v ...

  9. 记录结果再利用的"动态规划"

    2018-09-24 15:01:37 动态规划(DP: Dynamic Programming)是算法设计方法之一,在程序设计竞赛中经常被选作题材.在此,我们考察一些经典的DP问题,来看看DP究竟是 ...

随机推荐

  1. QTP自动化测试-按行取值(win10下输入?问题)-笔记20181119

    在win10下运行qtp10 所有输入汉字都会为?,在win7下可以.查询了百度.bingo没有解决问题.当前的解决办法 ,在脚本中使用DataTable取数据值,添加2行记录,一行使用汉字,一行使用 ...

  2. Lodop打印项对象类型属性区分

    Lodop提供了一些打印项类型,默认是普通项,通过设置打印对象的类型,可以实现一些普通项不能实现的效果.例如:该博客另一篇博文 标题是Lodop打印控件 打印‘接下一页’‘以下空白’,就用了眉脚项. ...

  3. Lodop扁宽横向241mm*93mm这种怪异的纸张如何设置

    Lodop中如果设置LODOP.SET_PRINT_PAGESIZE(2,'241mm','93mm','');,会发现实际的纸张和自己设置的不同,不只是打印机不识别,xps和pdf虚拟打印机也不能正 ...

  4. How to enable usb on vbox

    Device-->Install Guest Addition Shared Folders Settings-->Advanced-->Shared Clipboard--> ...

  5. 中断MSI INTA

    转载https://blog.csdn.net/huangkangying/article/details/11178425 MSI VS INTx(Pin-based interrupt) MSI的 ...

  6. poj-3080(kmp+暴力枚举)

    题意:给你多个字符串,问你这几个字符串的最长公共子串是哪个,如果有多个,输出字典序最大的那个,如果最长的公共子串长度小于3,输出一个奇怪的东西: 解题思路:首先看数据,数据不大,开始简单快乐的暴力之路 ...

  7. python深度学习库keras——安装

    TensorFlow安装keras需要在TensorFlow之上才能运行.所以这里安装TensorFlow.TensorFlow需要vs2015环境,需要wein64位环境,所以32位的小伙伴需要升级 ...

  8. Codeforces997D Cycles in product 【FFT】【树形DP】

    题目大意: 给两个树,求环的个数. 题目分析: 出题人摆错题号系列. 通过画图很容易就能想到把新图拆在两个树上,在树上游走成环. 考虑DP状态F,G,T.F表示最终答案,T表示儿子不考虑父亲,G表示父 ...

  9. atcoder NIKKEI Programming Contest 2019 E - Weights on Vertices and Edges

    题目链接:Weights on Vertices and Edges 题目大意:有一个\(n\)个点\(m\)条边的无向图,点有点权,边有边权,问至少删去多少条边使得对于剩下的每一条边,它所在的联通块 ...

  10. lemon special judge模板

    /* argv[1]:输入文件 argv[2]:选手输出文件 argv[3]:标准输出文件 argv[4]:单个测试点分值 argv[5]:输出最终得分的文件 argv[6]:输出错误报告的文件 */ ...