本人从2017年起,开始涉猎机器学习。作为入门,首先学习的是斯坦福大学Andrew Ng(吴恩达)教授的Coursera课程


2 单变量线性回归

线性回归属于监督学习(Supervise Learning),就是Right answer is given。 课程中,举了一个估计房产价格的例子,在此,我就直接使用两组数据去作为例子使用线性回归,拟合出效果最好的曲线。


2.1 单变量线性回归算法的思路

  1. 根据数据的分布,确定模型

    其中,h(x)是假设函数(Hypothesis Fuction),θ1θ0 是关于线性回归的参数
  2. 确定代价函数(Cost Fuction)

    其中,J(θ)是代价函数,也是误差函数,m代表数据个数,这样显然,目标函数就是:
  3. 确定是实现目标函数的方法,就是使J(θ)最小的方法。在这里,我们使用梯度下降法(Gradient Descent )

    对于此式,往下作解释。

下面我举一个很浅显的例子,验证线性回归算法的作用。
假设,有两组数据:
train_x = [1,2,3,4,5,6,7,8,9,10,11,12,13,14]
train_y = [3,5,7,9,11,13,15,17,19,21,23,25,27,29]
仔细观察这两组数据,发现它们满足:y = 2x +1这个函数关系,那么怎么使用线性回归得出这个结果呢?从机器学习的角度来说,就是怎么使得计算机能从已知的有限个数据中,拟合出最合适的曲线,并预测其他x值对应的y值。

2.2 线性模型

针对已知的数据,如果使用线性模型,由于只有一个特征/输入变量(此处指的是x),则属于单变量线性回归。预测函数为:

Python中使用Tensorflow库的实现:

#Input data
train_x = np.asarray([1,2,3,4,5,6,7,8,9,10,11,12,13,14])
train_y = np.asarray([3,5,7,9,11,13,15,17,19,21,23,25,27,29]) #Create the linear model
X = tf.placeholder("float")
W = tf.Variable(np.random.randn(),name="theta1")
b = tf.Variable(np.random.randn(),name="theta0")
pred = tf.add(tf.mul(W,X),b)

2.3 代价函数

建立基本模型之后,就要对模型误差进行评估,而这个评估的函数,就是代价函数
这里我们使用预测数据值和偏差的平方去表示模型的误差,式子如2.1所示。在tensorflow中实现:

m = train_x.shape[0]  #数据总个数
cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*m)

2.4目标函数的建立及实现

构造模型的目标,当然是是模型误差最小化,因此,目标函数为:

而怎么实现呢?在本例中,我们使用梯度下降,即:

其中,该式针对本例的意思,是:

这样,每进行一次运算,J(θ)的值就会进一步减少。

2.5 理清概念

模型理解的关键是切实理清假设函数和代价函数的作用。如下图所示:

注:图像均使用python下的matplotlib.pyplot和mpl_toolkits.mplot3d库所作。
显然,预测函数是根据训练数据而定的,而代价函数是为假设函数服务的,通过优化代价函数,就能找出最佳的参数赋给假设函数,从而找出最佳的模型。同时,由上图可见,当参数θ有两个的时候,代价函数是一个三维图,所以当参数更多的时候就是更多维的图。

2.6 程序实现线性回归

程序源码:

#!/usr/bin/env python2
#-*- coding:utf-8 -*-
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import sys reload(sys)
sys.setdefaultencoding('utf8') #Input data
train_x = np.asarray([1,2,3,4,5,6,7,8,9,10,11,12,13,14])
train_y = np.asarray([3,5,7,9,11,13,15,17,19,21,23,25,27,29]) X = tf.placeholder("float")
Y = tf.placeholder("float") #W,b分别代表θ1,θ0
#np.random.rann()用于初始化W和b
W = tf.Variable(np.random.randn(),name="theta1")
b = tf.Variable(np.random.randn(),name="theta0") #1 假设函数的确定
pred = tf.add(tf.mul(W,X),b) #2 代价函数的确定
m = train_x.shape[0] #
cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*m) #3 梯度下降
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
#至此模型构建完成 #Initialize the variables
init = tf.initialize_all_variables() #Lauch the graph
with tf.Session() as sess:
sess.run(init)
for epoch in range(1000): #进行100次的迭代训练
for (x,y) in zip(train_x,train_y):
sess.run(optimizer,feed_dict={X:x,Y:y})
#display
if(epoch+1)%50==0:
c=sess.run(cost,feed_dict={X:train_x,Y:train_y})
print "step:%04d, cost=%.9f, θ1=%s, θ0=%s"%((epoch+1),c,sess.run(W),sess.run(b))
print "Optimzer finished!"
#training_cost = sess.run(cost,feed_dict={X:train_x,Y:train_y}) print "The final is y=%sx+%s"%(sess.run(W),sess.run(b))
plt.plot(train_x,train_y,'ro',label="Original data")
plt.grid(True)
plt.plot(range(1,))
plt.plot(train_x,sess.run(W)*train_x+sess.run(b),label="Fitted line")
plt.legend()
plt.show()

程序运行结果:

step:0050, cost=0.068827711, θ1=1.92573, θ0=1.77617
step:0100, cost=0.055033159, θ1=1.93359, θ0=1.69404
step:0150, cost=0.044003420, θ1=1.94061, θ0=1.62061
step:0200, cost=0.035184156, θ1=1.9469, θ0=1.55494
step:0250, cost=0.028132409, θ1=1.95252, θ0=1.49622
step:0300, cost=0.022494031, θ1=1.95754, θ0=1.44372
step:0350, cost=0.017985778, θ1=1.96203, θ0=1.39677
step:0400, cost=0.014381131, θ1=1.96605, θ0=1.35479
step:0450, cost=0.011498784, θ1=1.96964, θ0=1.31725
step:0500, cost=0.009194137, θ1=1.97285, θ0=1.28368
step:0550, cost=0.007351381, θ1=1.97573, θ0=1.25366
step:0600, cost=0.005878080, θ1=1.97829, θ0=1.22682
step:0650, cost=0.004699936, θ1=1.98059, θ0=1.20282
step:0700, cost=0.003757860, θ1=1.98265, θ0=1.18136
step:0750, cost=0.003004675, θ1=1.98448, θ0=1.16217
step:0800, cost=0.002402445, θ1=1.98612, θ0=1.14501
step:0850, cost=0.001920973, θ1=1.98759, θ0=1.12967
step:0900, cost=0.001535962, θ1=1.9889, θ0=1.11595
step:0950, cost=0.001228108, θ1=1.99008, θ0=1.10368
step:1000, cost=0.000981987, θ1=1.99113, θ0=1.09271
Optimzer finished!
The final is y=1.99113x+1.09271


显然,最终得出的曲线很接近y=2x+1,如果增加训练的次数会更加接近。成功验证了线性回归算法!

Andrew Ng机器学习入门——线性回归的更多相关文章

  1. Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)

    title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...

  2. Andrew Ng机器学习课程笔记(一)之线性回归

    Andrew Ng机器学习课程笔记(一)之线性回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364598.html 前言 ...

  3. Andrew Ng机器学习算法入门(一):简介

    简介 最近在参加一个利用机器学习来解决安全问题的算法比赛,但是对机器学习的算法一直不了解,所以先了解一下机器学习相关的算法. Andrew Ng就是前段时间从百度离职的吴恩达.关于吴恩达是谁,相信程序 ...

  4. Andrew Ng机器学习课程笔记(五)之应用机器学习的建议

    Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...

  5. Andrew Ng机器学习课程笔记--汇总

    笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...

  6. Andrew Ng机器学习课程笔记(四)之神经网络

    Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...

  7. Andrew Ng机器学习课程笔记(三)之正则化

    Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 ...

  8. Andrew Ng机器学习课程笔记(二)之逻辑回归

    Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 ...

  9. Andrew Ng机器学习课程10

    Andrew Ng机器学习课程10 a example 如果hypothesis set中的hypothesis是由d个real number决定的,那么用64位的计算机数据表示的话,那么模型的个数一 ...

随机推荐

  1. 【转】 Android项目的mvc模式

    MVC (Model-View-Controller):M是指逻辑模型,V是指视图模型,C则是控制器.一个逻辑模型M可以对于多种视图模型V,比如一批统计数据你可以分别用柱状图.饼图V来表示.一种视图模 ...

  2. DbUtility Ex

    扩展 DbUtility (1) 2014-05-22 21:48 by Ivony..., 234 阅读, 3 评论, 收藏, 编辑 本文原始路径: https://www.zybuluo.com/ ...

  3. DLL文件的引用

    首先我们先要写一个DLL文件: 我先创建一个win32的DLL工程,在工程中添加了Math.h和Math.cpp文件,具体内容如下: Math.h: #pragma once #include &qu ...

  4. codeforces #275 div2题解

    A题大意: 给你l,r,问你在l~r之间,是否存在 a和b互质 , b和c互质 ,但是 a,c不互质 的情况:其中l<=a<b<c<=r;如果存在,就输出a,b,c;不存在就输 ...

  5. linux下telnet mysql的3306断口,提示Can't connect to MySQL server on localhost (110)

    新购买的阿里云ECS服务器,食用lnmp环境,安装完毕后,telnet localhost 3306提示Can't connect to MySQL server on localhost (110) ...

  6. 设计模式18---设计模式之策略模式(Strategy)(行为型)

    1.场景模拟 简单的报价管理系统: 对于普通用户和新用户报全价 对于老客户统一折扣5% 对于大客户统一折扣10% 2.不用模式的解决方案 package demo16.strategy.example ...

  7. C++拷贝构造函数总结

    C++拷贝构造函数总结 目录: 拷贝构造函数的基础知识 拷贝构造函数的使用 拷贝构造函数的行为 1.拷贝构造函数的基础知识 拷贝构造函数(copy constructor)是构造函数,是拷贝已经存在的 ...

  8. C/C++基础知识总结——数组、指针域、字符串

    1. 数组 1.1 数组作为函数参数 (1) 如果使用数组作为函数的参数,则实参和形参都是数组名,且类型要相同.数组名做参数时传递的是地址 (2) 使用方法: void rowSum(int a[][ ...

  9. TFS二次开发、C#知识点、SQL知识

    TFS二次开发.C#知识点.SQL知识总结目录   TFS二次开发系列 TFS二次开发系列:一.TFS体系结构和概念 TFS二次开发系列:二.TFS的安装 TFS二次开发系列:三.TFS二次开发的第一 ...

  10. 拦截所有AJAX调用,重点处理服务器异常

    拦截所有AJAX调用,重点处理服务器异常 背景 上篇文章http://www.cnblogs.com/happyframework/p/3241063.html介绍了如何以AOP的形式处理服务器异常, ...