Python网络爬虫-Scrapy框架
一.简介
Spider是所有爬虫的基类,其设计原则只是为了爬取start_url列表中网页,而从爬取到的网页中提取出的url进行继续的爬取工作使用CrawlSpider更合适。
二.使用
1.创建scrapy工程:scrapy startproject projectName
2.创建爬虫文件:scrapy genspider -t crawl spiderName www.xxx.com
--此指令对比以前的指令多了 "-t crawl",表示创建的爬虫文件是基于CrawlSpider这个类的,而不再是Spider这个基类。
3.观察生成的爬虫文件
# -*- coding: utf-8 -*-
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule class ChoutidemoSpider(CrawlSpider):
name = 'choutiDemo'
#allowed_domains = ['www.chouti.com']
start_urls = ['http://www.chouti.com/'] rules = (
Rule(LinkExtractor(allow=r'Items/'), callback='parse_item', follow=True),
) def parse_item(self, response):
i = {}
#i['domain_id'] = response.xpath('//input[@id="sid"]/@value').extract()
#i['name'] = response.xpath('//div[@id="name"]').extract()
#i['description'] = response.xpath('//div[@id="description"]').extract()
return i
- 2,3行:导入CrawlSpider相关模块
- 7行:表示该爬虫程序是基于CrawlSpider类的
- 12,13,14行:表示为提取Link规则
- 16行:解析方法
CrawlSpider类和Spider类的最大不同是CrawlSpider多了一个rules属性,其作用是定义”提取动作“。在rules中可以包含一个或多个Rule对象,在Rule对象中包含了LinkExtractor对象。
3.1 LinkExtractor:顾名思义,链接提取器。
LinkExtractor( allow=r'Items/',# 满足括号中“正则表达式”的值会被提取,如果为空,则全部匹配。 deny=xxx, # 满足正则表达式的则不会被提取。 restrict_xpaths=xxx, # 满足xpath表达式的值会被提取 restrict_css=xxx, # 满足css表达式的值会被提取 deny_domains=xxx, # 不会被提取的链接的domains。 ) - 作用:提取response中符合规则的链接。
3.2 Rule :
规则解析器。根据链接提取器中提取到的链接,根据指定规则提取解析器链接网页中的内容。
Rule(LinkExtractor(allow=r'Items/'), callback='parse_item', follow=True)
- 参数介绍:
参数1:指定链接提取器
参数2:指定规则解析器解析数据的规则(回调函数)
参数3:是否将链接提取器继续作用到链接提取器提取出的链接网页中。当callback为None,参数3的默认值为true。
3.3 rules=( ):
指定不同规则解析器。一个Rule对象表示一种提取规则。
3.4 CrawlSpider整体爬取流程:
a)爬虫文件首先根据起始url,获取该url的网页内容
b)链接提取器会根据指定提取规则将步骤a中网页内容中的链接进行提取
c)规则解析器会根据指定解析规则将链接提取器中提取到的链接中的网页内容根据指定的规则进行解析
d)将解析数据封装到item中,然后提交给管道进行持久化存储
4.简单代码实战应用
4.1 爬取糗事百科糗图板块的所有页码数据
# -*- coding: utf-8 -*-
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule class CrawldemoSpider(CrawlSpider):
name = 'qiubai'
#allowed_domains = ['www.qiushibaike.com']
start_urls = ['https://www.qiushibaike.com/pic/'] #连接提取器:会去起始url响应回来的页面中提取指定的url
link = LinkExtractor(allow=r'/pic/page/\d+\?') #s=为随机数
link1 = LinkExtractor(allow=r'/pic/$')#爬取第一页
#rules元组中存放的是不同的规则解析器(封装好了某种解析规则)
rules = (
#规则解析器:可以将连接提取器提取到的所有连接表示的页面进行指定规则(回调函数)的解析
Rule(link, callback='parse_item', follow=True),
Rule(link1, callback='parse_item', follow=True),
) def parse_item(self, response):
print(response)
4.2 爬虫文件:
# -*- coding: utf-8 -*-
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from qiubaiBycrawl.items import QiubaibycrawlItem
import re
class QiubaitestSpider(CrawlSpider):
name = 'qiubaiTest'
#起始url
start_urls = ['http://www.qiushibaike.com/'] #定义链接提取器,且指定其提取规则
page_link = LinkExtractor(allow=r'/8hr/page/\d+/') rules = (
#定义规则解析器,且指定解析规则通过callback回调函数
Rule(page_link, callback='parse_item', follow=True),
) #自定义规则解析器的解析规则函数
def parse_item(self, response):
div_list = response.xpath('//div[@id="content-left"]/div') for div in div_list:
#定义item
item = QiubaibycrawlItem()
#根据xpath表达式提取糗百中段子的作者
item['author'] = div.xpath('./div/a[2]/h2/text()').extract_first().strip('\n')
#根据xpath表达式提取糗百中段子的内容
item['content'] = div.xpath('.//div[@class="content"]/span/text()').extract_first().strip('\n') yield item #将item提交至管道
4.2 item文件:
# -*- coding: utf-8 -*- # Define here the models for your scraped items
#
# See documentation in:
# https://doc.scrapy.org/en/latest/topics/items.html import scrapy class QiubaibycrawlItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
author = scrapy.Field() #作者
content = scrapy.Field() #内容
4.3 管道文件:
# -*- coding: utf-8 -*- # Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html class QiubaibycrawlPipeline(object): def __init__(self):
self.fp = None def open_spider(self,spider):
print('开始爬虫')
self.fp = open('./data.txt','w') def process_item(self, item, spider):
#将爬虫文件提交的item写入文件进行持久化存储
self.fp.write(item['author']+':'+item['content']+'\n')
return item def close_spider(self,spider):
print('结束爬虫')
self.fp.close()
Python网络爬虫-Scrapy框架的更多相关文章
- Python网络爬虫Scrapy框架研究 以及 代理设置
地址:https://github.com/yidao620c/core-scrapy 例子:https://github.com/geekan/scrapy-examples 中文翻译文档: htt ...
- Python网络爬虫Scrapy框架研究
看到一个爬虫比较完整的教程.保留一下. https://github.com/yidao620c/core-scrapy
- Python网络爬虫_Scrapy框架_1.新建项目
在Pycharm中新建一个基于Scrapy框架的爬虫项目(Scrapy库已经导入) 在终端中输入: ''itcast.cn''是为爬虫限定爬取范围 创建完成后的目录 将生成的itcast.py文件移动 ...
- Python网络爬虫_Scrapy框架_2.logging模块的使用
logging模块提供日志服务 在scrapy框架中已经对其进行一些操作所以使用更为简单 在Scrapy框架中使用: 1.在setting.py文件中设置LOG_LEVEL(设置日志等级,只有高于等于 ...
- Python网络爬虫 | Scrapy爬取妹子图网站全站照片
根据现有的知识,写了一个下载妹子图(meizitu.com)Scrapy脚本,把全站两万多张照片下载到了本地. 网站的分析 网页的网址分析 打开网站,发现网页的网址都是以 http://www.mei ...
- Python网络爬虫之Scrapy框架(CrawlSpider)
目录 Python网络爬虫之Scrapy框架(CrawlSpider) CrawlSpider使用 爬取糗事百科糗图板块的所有页码数据 Python网络爬虫之Scrapy框架(CrawlSpider) ...
- 学习推荐《精通Python网络爬虫:核心技术、框架与项目实战》中文PDF+源代码
随着大数据时代的到来,我们经常需要在海量数据的互联网环境中搜集一些特定的数据并对其进行分析,我们可以使用网络爬虫对这些特定的数据进行爬取,并对一些无关的数据进行过滤,将目标数据筛选出来.对特定的数据进 ...
- python爬虫scrapy框架——人工识别登录知乎倒立文字验证码和数字英文验证码(2)
操作环境:python3 在上一文中python爬虫scrapy框架--人工识别知乎登录知乎倒立文字验证码和数字英文验证码(1)我们已经介绍了用Requests库来登录知乎,本文如果看不懂可以先看之前 ...
- 如何利用Python网络爬虫抓取微信朋友圈的动态(上)
今天小编给大家分享一下如何利用Python网络爬虫抓取微信朋友圈的动态信息,实际上如果单独的去爬取朋友圈的话,难度会非常大,因为微信没有提供向网易云音乐这样的API接口,所以很容易找不到门.不过不要慌 ...
随机推荐
- 2018-2019-2 网络对抗技术 20165202 Exp3 免杀原理与实践
博客目录 一.基础问题回答 二.实践内容 1.使用msf编码器msfvenom生成后门程序 2.使用msf编码器msfvenom生成jar文件 3.使用veil-evasion生成后门程序及检测 4. ...
- kbmMW TkbmMWHashSHA256与Delphi 10.2 THashSHA2算出相同的结果
procedure TForm2.Button3Click(Sender: TObject); var hashed:string; begin hashed:=TkbmMWHashSHA256.Ha ...
- 优化cocos2d/x程序的内存使用和程序大小
本站文章均为李华明Himi原创,转载务必在明显处注明:转载自[黑米GameDev街区] 原文链接: http://www.himigame.com/iphone-cocos2d/1043.html ☞ ...
- Boosting 简单介绍
前面介绍了Adaboost,知道了Adaboost是损失函数为指数函数的Boosting算法.那么Boosting还包括了以下几个: 损失函数名称 损失函数 算法 平方差(Squared error) ...
- Jmeter系列培训(1)--开山篇
一直以来,我们不断分享,有的人喜欢,也有的人不喜欢,这都没什么,喜欢的点个赞,留个言,不喜欢的就不看好了,今天我们继续,关于jmeter我们分享了很多工作遇到的问题的解决方案,但是很多 ...
- MyEclipse2017CI破解教程
因为工作中需要有多个MyEclipse去管理不同的项目组的工作,恰逢MyEclipse2017CI发布,下载破解尝鲜,因为之前安装了MyEclipse2016CI7和MyEclipse2014GA,两 ...
- 玩转TypeScript(5)--环境声明
环境声明为TypeScript引入了一个作用域,但是对于产生的javaScript程序不会有任何影响.程序员可以使用环境声明来告之TypeScript,一些其他的组将将提供变量的声明.比如,默认情况下 ...
- 常用增强学习实验环境 II (ViZDoom, Roboschool, TensorFlow Agents, ELF, Coach等) (转载)
原文链接:http://blog.csdn.net/jinzhuojun/article/details/78508203 前段时间Nature上发表的升级版Alpha Go - AlphaGo Ze ...
- Error: timed out while waiting for target halted
/************************************************************************************ * Error: timed ...
- 小程序引入多个e-charts
小程序引入e-charts图表 这里是狗尾草第一次发表掘金文章,日后望各位大佬多多支持~ 前言:运营助手,见名知意,没有图表数据的展示,看上去是有多空白.因此,俺们UI做了很好的交互,一个页面来了4个 ...