题目链接:http://www.spoj.com/problems/IM/en/

Time limit:491 ms  Memory limit:1572864 kB  Code length Limit:50000 B

Jedi knights, Qui-Gon Jinn and his young apprentice Obi-Wan Kenobi, are entrusted by Queen Padmé Amidala to save Naboo from an invasion by the Trade Federation. They must leave Naboo immediately and go to Tatooine to pick up the proof of the Federation’s evil design. They then must proceed on to the Republic’s capital planet Coruscant to produce it in front of the Republic’s Senate. To help them in this endeavor, the queen’s captain provides them with an intergalactic map. This map shows connections between planets not yet blockaded by the Trade Federation. Any pair of planets has at most one connection between them, and all the connections are two-way. To avoid detection by enemy spies, the knights must embark on this adventure without visiting any planet more than once. Can you help them by determining if such a path exists? 
Note - In the attached map, the desired path is shown in bold.

Input Description

The first line of the input is a positive integer t ≤ 20, which is the number of test cases. The descriptions of the test cases follow one after the other. The first line of each test case is a pair of positive integers n, m (separated by a single space). 2 ≤ n ≤ 30011 is the number of planets and m ≤ 50011 is the number of connections between planets. The planets are indexed with integers from 1 to n. The indices of Naboo, Tatooine and Coruscant are 1, 2, 3 respectively. The next m lines contain two integers each, giving pairs of planets that have a connection between them.

Output Description

The output should contain t lines. The ith line corresponds to the ith test case. The output for each test case should be YES if the required path exists and NO otherwise.

Example

Input
2
3 3
1 2
2 3
1 3
3 1
1 3

Output
YES
NO

就是1到n共n个点,互相之间有m条边连接,主人公呢想从1出发,经过2,到达3,不走重复路也不走重复点,问你可不可行。

怎么说呢,最大流构图题做的多了,就有点感觉了,大概知道怎么个建图方向了。

首先,瞟了一眼[网络流建模汇总][Edelweiss].pdf上的思路,知道了从2出发,往1和3两个汇点做最大流,这样就可以满足题目要求;

然后我们就建立超级源点s,和超级汇点t,点2连到s上去,cap=2;点1、3都连到t上去,cap=1;

然后我们还要想到一件事情,不能走重复边,很简单,所有题目里给的边的cap都设为1;

那不走重复点呢?就需要拆点,说起来有点玄乎,其实就是原本是个点,然后我们两只手拿住他,吧唧那么一拉,诶就变成了一条边,

显然,我们就记这条拆点边为( from = in(i) , to = out(i) , cap = 1);

这样我们的图就建好了,剩下来的就是dinic了。

 #include<cstdio>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#define INF 0x3f3f3f3f
#define MAXN 2*(30011+1000)
using namespace std;
int n,m;
struct Edge{
int u,v,c,f;
};
struct Dinic
{
int s,t;
vector<Edge> E;
vector<int> G[MAXN];
bool vis[MAXN];
int lev[MAXN];
int cur[MAXN];
void init(int n)
{
E.clear();
for(int i=;i<=n;i++) G[i].clear();
}
void addedge(int from,int to,int cap)
{
E.push_back((Edge){from,to,cap,});
E.push_back((Edge){to,from,,});
G[from].push_back(E.size()-);
G[to].push_back(E.size()-);
}
bool bfs()
{
memset(vis,,sizeof(vis));
queue<int> q;
q.push(s);
lev[s]=;
vis[s]=;
while(!q.empty())
{
int now=q.front(); q.pop();
for(int i=;i<G[now].size();i++)
{
Edge edge=E[G[now][i]];
int nex=edge.v;
if(!vis[nex] && edge.c>edge.f)
{
lev[nex]=lev[now]+;
q.push(nex);
vis[nex]=;
}
}
}
return vis[t];
}
int dfs(int now,int aug)
{
if(now==t || aug==) return aug;
int flow=,f;
for(int& i=cur[now];i<G[now].size();i++)
{
Edge& edge=E[G[now][i]];
int nex=edge.v;
if(lev[now]+ == lev[nex] && (f=dfs(nex,min(aug,edge.c-edge.f)))>)
{
edge.f+=f;
E[G[now][i]^].f-=f;
flow+=f;
aug-=f;
if(!aug) break;
}
}
return flow;
}
int maxflow()
{
int flow=;
while(bfs())
{
memset(cur,,sizeof(cur));
flow+=dfs(s,INF);
}
return flow;
}
}dinic;
int in(int x){return x;}
int out(int x){return x+n;}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);//n个点,m条边
dinic.init(*n+);
for(int i=;i<=m;i++)
{
int from,to;
scanf("%d%d",&from,&to);
if(<=from && from<=n && <=to && to<=n)
{
dinic.addedge(out(from),in(to),);
dinic.addedge(out(to),in(from),);
}
}
dinic.s=, dinic.t=*n+;
dinic.addedge(dinic.s,in(),);
dinic.addedge(out(),dinic.t,);
dinic.addedge(out(),dinic.t,);
for(int i=;i<=n;i++) dinic.addedge(in(i),out(i),i==?:);
if(dinic.maxflow()==) printf("YES\n");
else printf("NO\n");
}
}

PS.听说测试输入边的时候,还会超出范围?不管是不是真的,反正加个if()语句鲁棒一下,无所谓。

SPOJ IM - Intergalactic Map - [拆点最大流]的更多相关文章

  1. [SPOJ962]Intergalactic Map 拆点+最大流

    Jedi knights, Qui-Gon Jinn and his young apprentice Obi-Wan Kenobi, are entrusted by Queen Padmé Ami ...

  2. SPOJ 962 Intergalactic Map (网络最大流)

    http://www.spoj.com/problems/IM/ 962. Intergalactic Map Problem code: IM Jedi knights, Qui-Gon Jinn ...

  3. SPOJ 962 Intergalactic Map

    Intergalactic Map Time Limit: 6000ms Memory Limit: 262144KB This problem will be judged on SPOJ. Ori ...

  4. SPOJ 962 Intergalactic Map (从A到B再到C的路线)

    [题意]在一个无向图中,一个人要从A点赶往B点,之后再赶往C点,且要求中途不能多次经过同一个点.问是否存在这样的路线.(3 <= N <= 30011, 1 <= M <= 5 ...

  5. SPOJ 0962 Intergalactic Map

    题目大意:在一个无向图中,一个人要从A点赶往B点,之后再赶往C点,且要求中途不能多次经过同一个点.问是否存在这样的路线.(3 <= N <= 30011, 1 <= M <= ...

  6. Risk UVA - 12264 拆点法+最大流+二分 最少流量的节点流量尽量多。

    /** 题目:Risk UVA - 12264 链接:https://vjudge.net/problem/UVA-12264 题意:给n个点的无权无向图(n<=100),每个点有一个非负数ai ...

  7. hdu4289 最小割最大流 (拆点最大流)

    最小割最大流定理:(参考刘汝佳p369)增广路算法结束时,令已标号结点(a[u]>0的结点)集合为S,其他结点集合为T=V-S,则(S,T)是图的s-t最小割. Problem Descript ...

  8. Control(拆点+最大流)

    Control http://acm.hdu.edu.cn/showproblem.php?pid=4289 Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  9. BZOJ 1877 晨跑 拆点费用流

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1877 题目大意: Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧 ...

随机推荐

  1. moment.js用法总结

    moment(),获取当前时间 moment(string)把字符串变成moment时间格式 moment().format("YYYY-MM-DD HH:mm:ss"):规定时间 ...

  2. java.lang.IllegalArgumentException: No converter found for return value of type

    原文地址: http://blog.csdn.net/linhaiguo/article/details/51554766 问题原因: 请求返回的数据无法转换,需要添加如下配置 解决方法: 1.在po ...

  3. 深度缓存ZBuffer线性化

    double linearizeDepth(double nearz,double farz,double depth) { depth = 2.0 * depth - 1.0; return (2. ...

  4. [Python] 正确复制列表的方法

    new = old[:] Python老鸟都知道以上代码是什么意思.它复制列表old到new.它对于新手来说是种困惑而且应该避免使用这种方法.不幸的是[:]标记法被广泛使用,可能是Python程序员不 ...

  5. Spring Mvc 页面传递数组到后台接收

    1.定义一个简单的类 User.java public class User { private Integer id; private String name; public Integer get ...

  6. java基础思维导图大全

  7. Matlab练习——矩阵和数组的操作

    题目来自:<战胜MATLAB必做练习50道> 题目有更改,改成了我想写的样子. 1. 创建一个3×3矩阵,并将其扩充为4×5矩阵 clear; clc; mat1 = ones(,) ma ...

  8. 【贪心】PAT 1033. To Fill or Not to Fill (25)

    1033. To Fill or Not to Fill (25) 时间限制 10 ms 内存限制 32000 kB 代码长度限制 16000 B 判题程序 Standard 作者 ZHANG, Gu ...

  9. 傲游浏览器---自定义 UserAgent 字符串

    遨游浏览器:http://www.maxthon.cn/ 自定义 UserAgent : http://www.fynas.com/ua  手机UserAgent大全 设备 系统 浏览器 User-A ...

  10. sencha touch list css(样式) 详解

    /* *自定义列表页面 */ Ext.define('app.view.util.MyList', { alternateClassName: 'myList', extend: 'Ext.List' ...