1007: [HNOI2008]水平可见直线[维护下凸壳]
1007: [HNOI2008]水平可见直线
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 7184 Solved: 2741
[Submit][Status][Discuss]
Description
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为
可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
Input
第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi
Output
从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格
Sample Input
-1 0
1 0
0 0
Sample Output
HINT
Source
#include<cstdio>
#include<algorithm>
using namespace std;
inline int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=5e5+;
struct node{int a,b,id;}c[N];
int n,cnt,pos[N];double slop[N];bool vis[N];
bool operator <(const node &x,const node &y){
return x.a<y.a;
}
int main(){
n=read();
for(int i=;i<=n;i++) c[i].a=read(),c[i].b=read(),c[i].id=i;
sort(c+,c+n+);
int now=;
for(int i=;i<=n;i++){
for(;c[i].a==c[now].a;i++){
if(c[i].b>c[now].b){
c[now]=c[i];
}
}
if(i<=n) c[++now]=c[i];
}
pos[cnt=]=;slop[]=-0x7fffffffffffffffLL;
for(int i=;i<=now;i++){
double low;
for(;;){//相对斜率关系(避免求交点)
low=(double)(c[pos[cnt]].b-c[i].b)/(double)(c[i].a-c[pos[cnt]].a);
if(low<=slop[cnt])
cnt--;
else
break;
}
pos[++cnt]=i;
slop[cnt]=low;
}
for(int i=;i<=cnt;i++) vis[c[pos[i]].id]=;
for(int i=;i<=n;i++) if(vis[i]) printf("%d ",i);
return ;
}
1007: [HNOI2008]水平可见直线[维护下凸壳]的更多相关文章
- BZOJ 1007 [HNOI2008]水平可见直线
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4453 Solved: 1636[Submit][Sta ...
- bzoj 1007 [HNOI2008]水平可见直线(单调栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5120 Solved: 1899[Submit][Sta ...
- BZOJ 1007 [HNOI2008]水平可见直线 (栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7940 Solved: 3030[Submit][Sta ...
- 2018.07.03 BZOJ 1007: [HNOI2008]水平可见直线(简单计算几何)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB Description 在xoy直角坐标平面上有n条直线L1,L2,-Ln, ...
- BZOJ 1007: [HNOI2008]水平可见直线 栈/计算几何
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB 题目连接 http://www.lydsy.com/JudgeOnline ...
- BZOJ 1007: [HNOI2008]水平可见直线 平面直线
1007: [HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则 ...
- BZOJ.1007.[HNOI2008]水平可见直线(凸壳 单调栈)
题目链接 可以看出我们是要维护一个下凸壳. 先对斜率从小到大排序.斜率最大.最小的直线是一定会保留的,因为这是凸壳最边上的两段. 维护一个单调栈,栈中为当前可见直线(按照斜率排序). 当加入一条直线l ...
- 【BZOJ】1007: [HNOI2008]水平可见直线(凸包)
题目 传送门:QWQ 分析 在下面维护一个凸壳 好久没写博客了...... 代码 #include <bits/stdc++.h> using namespace std; ; ,INF= ...
- BZOJ 1007 [HNOI2008]水平可见直线 ——半平面交 凸包
发现需要求一个下凸的半平面上有几个交点. 然后我们把它变成凸包的问题. 好写.好调.还没有精度误差. #include <map> #include <ctime> #incl ...
随机推荐
- linux nginx配置多个网站
1.建立wwwroot(/home/wwwrooot) 另建立一个wwwroot/test/index.html(网站目录) 2.建立vhost文件(/usr/local/nginx/conf/vho ...
- Java编程思想学习笔记——枚举类型
前言 关键字enum可以将一组具名的值有限集合创建一种为新的类型,而这些具名的值可以作为常规的程序组件使用. 正文 基本enum特性 调用enum的values()方法可以遍历enum实例,value ...
- mongo数据库命令简单学习
db.getCollection('product').update({status:"offline"},{$set:{status:"online"}},f ...
- 安装unity3d多个版本共存
转自:https://www.cnblogs.com/xsgame/p/3549486.html 用4.3打开两个低版本的unity工程,都报错.... 用低版本打开正常,希望Unity3D版本兼容性 ...
- MTK 隐藏通知栏
步骤: 源码/frameworks/base/packages/SystemUI/src/com/android/systemui/statusbar/phone/PhoneStatusBarVie ...
- Linux静态库生成
Linux上的静态库,其实是目标文件的归档文件. 在Linux上创建静态库的步骤如下: 写源文件,通过 gcc -c xxx.c 生成目标文件. 用 ar 归档目标文件,生成静态库. 配合静态库,写一 ...
- Unity3D的按钮添加事件有三种方式
为Unity3D的按钮添加事件有三种方式,假设我们场景中有一个Canvas对象,Canvas对象中有一个Button对象. 方式一: 创建脚本ClickObject.cs,然后将脚本添加到Canvas ...
- 教你解锁被锁住的苹果mac电脑的文件跟文件夹,同时也可删除被锁的文件跟文件夹(转)
在Mac OSX 下无法删除的文件可大概分为下列三种情形 1.档案(夹)被锁定 2.文件正在使用中 3.没有权限的档案(夹) 一.「 为什么档案会被锁定 」 1.个人自行替档案加上 2.在拷贝或是整理 ...
- AngularJS------Error: Cannot find module '@angular-devkit/core'
如图: 解决方法: 进入项目目录下执行以下代码 npm i --save-dev @angular-devkit/core
- iscroll5实现下拉加载更多
1 下载最新的iscroll5,本文版本是5.1.3 2 提取iscroll-probe.js,选择这个文件的原因是我们要给iscroll扩展一个事件,需要用到probeType 属性 3 修改isc ...