1007: [HNOI2008]水平可见直线[维护下凸壳]
1007: [HNOI2008]水平可见直线
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 7184 Solved: 2741
[Submit][Status][Discuss]
Description
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为
可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
Input
第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi
Output
从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格
Sample Input
-1 0
1 0
0 0
Sample Output
HINT
Source
#include<cstdio>
#include<algorithm>
using namespace std;
inline int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=5e5+;
struct node{int a,b,id;}c[N];
int n,cnt,pos[N];double slop[N];bool vis[N];
bool operator <(const node &x,const node &y){
return x.a<y.a;
}
int main(){
n=read();
for(int i=;i<=n;i++) c[i].a=read(),c[i].b=read(),c[i].id=i;
sort(c+,c+n+);
int now=;
for(int i=;i<=n;i++){
for(;c[i].a==c[now].a;i++){
if(c[i].b>c[now].b){
c[now]=c[i];
}
}
if(i<=n) c[++now]=c[i];
}
pos[cnt=]=;slop[]=-0x7fffffffffffffffLL;
for(int i=;i<=now;i++){
double low;
for(;;){//相对斜率关系(避免求交点)
low=(double)(c[pos[cnt]].b-c[i].b)/(double)(c[i].a-c[pos[cnt]].a);
if(low<=slop[cnt])
cnt--;
else
break;
}
pos[++cnt]=i;
slop[cnt]=low;
}
for(int i=;i<=cnt;i++) vis[c[pos[i]].id]=;
for(int i=;i<=n;i++) if(vis[i]) printf("%d ",i);
return ;
}
1007: [HNOI2008]水平可见直线[维护下凸壳]的更多相关文章
- BZOJ 1007 [HNOI2008]水平可见直线
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4453 Solved: 1636[Submit][Sta ...
- bzoj 1007 [HNOI2008]水平可见直线(单调栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5120 Solved: 1899[Submit][Sta ...
- BZOJ 1007 [HNOI2008]水平可见直线 (栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7940 Solved: 3030[Submit][Sta ...
- 2018.07.03 BZOJ 1007: [HNOI2008]水平可见直线(简单计算几何)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB Description 在xoy直角坐标平面上有n条直线L1,L2,-Ln, ...
- BZOJ 1007: [HNOI2008]水平可见直线 栈/计算几何
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB 题目连接 http://www.lydsy.com/JudgeOnline ...
- BZOJ 1007: [HNOI2008]水平可见直线 平面直线
1007: [HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则 ...
- BZOJ.1007.[HNOI2008]水平可见直线(凸壳 单调栈)
题目链接 可以看出我们是要维护一个下凸壳. 先对斜率从小到大排序.斜率最大.最小的直线是一定会保留的,因为这是凸壳最边上的两段. 维护一个单调栈,栈中为当前可见直线(按照斜率排序). 当加入一条直线l ...
- 【BZOJ】1007: [HNOI2008]水平可见直线(凸包)
题目 传送门:QWQ 分析 在下面维护一个凸壳 好久没写博客了...... 代码 #include <bits/stdc++.h> using namespace std; ; ,INF= ...
- BZOJ 1007 [HNOI2008]水平可见直线 ——半平面交 凸包
发现需要求一个下凸的半平面上有几个交点. 然后我们把它变成凸包的问题. 好写.好调.还没有精度误差. #include <map> #include <ctime> #incl ...
随机推荐
- php模拟post提交请求与调用接口
/** * 模拟post进行url请求 * @param string $url * @param string $param */ function request_post($url = '', ...
- Java多线程——线程范围内共享变量和ThreadLocal
多个线程访问共享对象和数据的方式 1.如果每个线程执行的代码相同,可以使用同一个Runnable对象,这个Runnable对象中有那个共享数据,例如,买票系统就可以这么做. package java_ ...
- 阿里云mysql远程连不上
1. 服务器规则添加 3306端口 2. mysql localhost 改为% mysql> select user, host from mysql.user; GRANT ALL PRIV ...
- 正則表達式re中的贪心算法和非贪心算法 在python中的应用
之前写了一篇有关正則表達式的文章.主要是介绍了正則表達式中通配符 转义字符 字符集 选择符和子模式 可选项和反复子模式 字符串的開始和结尾 ,有兴趣的能够查看博客内容. 此文章主要内容将要介绍re中的 ...
- Java程序员的IntelliJ IDEA使用教程
前言 博主是Java程序员,以前一直都用myeclipse来开发的,说实话感觉myeclipse毫无美感可言,后来经过同事介绍,认识了IDEA,一眼就相中了IDEA黑色的主题风格,自此就抛弃了旧爱my ...
- ABBYY FineReader Pro for Mac系统要求
ABBYY FineReader Pro for Mac作为先进的OCR图文识别软件,为各种各样的任务提供全面的解决方案,可轻松将纸质文档.PDF文件和数字文本照片转换为可编辑和可搜索的文件,替代了手 ...
- IE8 AJAX 不能正常工作 解决办法
function crossDomainAjax(url, successCallback) { // IE8 & 9 only Cross domain JSON GET request i ...
- phpcms v9 添加内容出现500错误
今天开发好一个网站,上传网站后,不知道安装的时候要求fsockopen()函数打开,我直接跳过安装完成的,所以搞得后面出错了,我一直以为这个问题,今天花了一天的时间找资料,测试,终于知道什么原因了,其 ...
- 【2018年12月10日】A股最便宜的股票
新钢股份(SH600782) - 当前便宜指数:196.21 - 滚动扣非市盈率PE:2.86 - 动态市净率PB:0.95 - 动态年化股息收益率:1.78% - 新钢股份(SH600782)的历史 ...
- Activiti 5.1.4最佳实践
1.简单介绍 Activiti是一个开源的工作流引擎,它实现了BPMN 2.0规范,可以发布设计好的流程定义,并通过api进行流程调度. Activiti 作为一个遵从 Apache 许可的工作流和业 ...