『Sklearn』特征向量化处理
『Kaggle』分类任务_决策树&集成模型&DataFrame向量化操作
|
1
2
3
4
5
6
7
8
9
|
'''特征提取器'''from sklearn.feature_extraction import DictVectorizervec = DictVectorizer(sparse=False)print(X_train.to_dict(orient='record'))X_train = vec.fit_transform(X_train.to_dict(orient='record'))print(X_train)print(vec.feature_names_)X_test = vec.transform(X_test.to_dict(orient='record')) |
涉及两个操作,
- DataFrame字典化
- 字典向量化
1.DataFrame字典化

|
1
2
3
4
5
6
7
8
9
10
|
import numpy as npimport pandas as pdindex = ['x', 'y']columns = ['a','b','c']dtype = [('a','int32'), ('b','float32'), ('c','float32')]values = np.zeros(2, dtype=dtype)df = pd.DataFrame(values, index=index)df.to_dict(orient='record') |
2.字典向量化
DictVectorizer: 将dict类型的list数据,转换成numpy array,具有属性vec.feature_names_,查看提取后的特征名。
具体效果如下,
>>> from sklearn.feature_extraction import DictVectorizer
>>> v = DictVectorizer(sparse=False)
>>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]
>>> X = v.fit_transform(D)
>>> X
array([[ 2., 0., 1.],
[ 0., 1., 3.]])
>>> v.transform({'foo': 4, 'unseen_feature': 3})
array([[ 0., 0., 4.]])
数字的特征不变,没有该特征的项给赋0,对于未参与训练的特征不予考虑。
对应到本程序,
print(X_train.to_dict(orient='record')):
[{'sex': 'male', 'pclass': '3rd', 'age': 31.19418104265403},
...... ....... ....... ......
{'sex': 'female', 'pclass': '1st', 'age': 31.19418104265403}]
提取特征,
X_train = vec.fit_transform(X_train.to_dict(orient='record'))
print(X_train):[[ 31.19418104 0. 0. 1. 0. 1. ]
[ 31.19418104 1. 0. 0. 1. 0. ]
[ 31.19418104 0. 0. 1. 0. 1. ]
...,
[ 12. 0. 1. 0. 1. 0. ]
[ 18. 0. 1. 0. 0. 1. ]
[ 31.19418104 0. 0. 1. 1. 0. ]]
数字的年龄没有改变,其他obj特征变成了onehot编码的特征,各列意义可以查看的,
print(vec.feature_names_):
['age', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', 'sex=female', 'sex=male']
一个直观例子:
v = DictVectorizer(sparse=False)
v.fit_transform([{'a':1},{'a':2},{'a':3}])
Out[7]:
array([[ 1.],
[ 2.],
[ 3.]])
v.feature_names_
Out[8]:
['a']
v.fit_transform([{'a':'1'},{'a':'2'},{'a':'3'}])
Out[9]:
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
v.feature_names_
Out[10]:
['a=1', 'a=2', 'a=3']
注意,v.feature_names_输出顺序和v.fit_transform()生成顺序是一一对应的,
v.fit_transform([{'a':'2q'},{'a':'1v'},{'a':'3t'},{'a':'3t'}])
Out[17]:
array([[ 0., 1., 0.],
[ 1., 0., 0.],
[ 0., 0., 1.],
[ 0., 0., 1.]])
v.feature_names_
Out[18]:
['a=1v', 'a=2q', 'a=3t']然后,
np.argmax(np.array([[ 0., 1., 0.],
[ 1., 0., 0.],
[ 0., 0., 1.],
[ 0., 0., 1.]]),axis=1)
Out[19]:
array([1, 0, 2, 2])
进一步的,也就是说v.feature_names_输出顺序对应于v.fit_transform()的非onehot排序。
『Sklearn』特征向量化处理的更多相关文章
- 『Sklearn』框架自带数据集接口
自带数据集类型如下: # 自带小型数据集# sklearn.datasets.load_<name># 在线下载数据集# sklearn.datasets.fetch_<name&g ...
- 『Sklearn』数据划分方法
原理介绍 K折交叉验证: KFold,GroupKFold,StratifiedKFold, 留一法: LeaveOneGroupOut,LeavePGroupsOut,LeaveOneOut,Lea ...
- 『TensorFlow』读书笔记_降噪自编码器
『TensorFlow』降噪自编码器设计 之前学习过的代码,又敲了一遍,新的收获也还是有的,因为这次注释写的比较详尽,所以再次记录一下,具体的相关知识查阅之前写的文章即可(见上面链接). # Aut ...
- 『TensorFlow』读书笔记_VGGNet
VGGNet网络介绍 VGG系列结构图, 『cs231n』卷积神经网络工程实践技巧_下 1,全部使用3*3的卷积核和2*2的池化核,通过不断加深网络结构来提升性能. 所有卷积层都是同样大小的filte ...
- 『计算机视觉』Mask-RCNN_从服装关键点检测看KeyPoints分支
下图Github地址:Mask_RCNN Mask_RCNN_KeyPoints『计算机视觉』Mask-RCNN_论文学习『计算机视觉』Mask-RCNN_项目文档翻译『计算机视觉』Mas ...
- 『TensotFlow』RNN中文文本_上
中文文字预处理流程 文本处理 读取+去除特殊符号 按照字段长度排序 辅助数据结构生成 生成 {字符:出现次数} 字典 生成按出现次数排序好的字符list 生成 {字符:序号} 字典 生成序号list ...
- 『cs231n』通过代码理解风格迁移
『cs231n』卷积神经网络的可视化应用 文件目录 vgg16.py import os import numpy as np import tensorflow as tf from downloa ...
- 『计算机视觉』Mask-RCNN_锚框生成
Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』M ...
- 『计算机视觉』Mask-RCNN_推断网络其六:Mask生成
一.Mask生成概览 上一节的末尾,我们已经获取了待检测图片的分类回归信息,我们将回归信息(即待检测目标的边框信息)单独提取出来,结合金字塔特征mrcnn_feature_maps,进行Mask生成工 ...
随机推荐
- xmind使用教程思维导图
xmind使用教程思维导图 开始XMind旅程标记: 仅需2个快捷键 1 点击快捷键 创建同级主题 创建子主题 2 输入 选中主题后, 双击鼠标左键 或 单击空格键, 进入编辑状态. 3 其他内容 您 ...
- web前端----jQuery扩展(很重要!!)
1.jQuery扩展语法 把扩展的内容就可以写到xxxx.js文件了,在主文件中直接导入就行了. 用法1.$.xxx() $.extend({ "GDP": function () ...
- 06: linux中find查找命令总结
1.在当前目录下查找以txt结尾的文件 find . -name "*.txt" 2.在当前目录下查找所有以字母开头的文件 find . -name "[a-z]*&qu ...
- 20145205武钰_Exp5 MSF基础应用
20145205武钰_Exp5 MSF基础应用 实验后回答问题 exploit:这个词本身只是利用,但是它在黑客眼里就是漏洞利用.有漏洞不一定就有Exploit(利用).有Exploit就肯定有漏洞. ...
- tf.placeholder使用说明
tf.placeholder(dtype, shape=None, name=None) placeholder,占位符,在tensorflow中类似于函数参数,运行时必须传入值. dtype:数据类 ...
- js实现ajax请求
练下手,好久没写ajax var xmlhttp=null;//创建XMLHttprequest function createXMLHttpRequest(){ if(window.ActiveXO ...
- vim常用的配置
.vimrc配置 syntax enable syntax on set relativenumber set autoindent set tabstop=4 set expandtab " ...
- MAKEFILE 编程基础之一【转】
本文转载自:http://www.himigame.com/gcc-makefile/766.html 概述: 什么是makefile?或许很多Winodws的程序员都不知道这个东西,因为那些Wind ...
- JavaScript 各种验证收集
filter或者forEach函数,可能是因为你的浏览器还不够新,暂时不支持新标准的函数,你可以使用如下方式自己定义: if (!Array.prototype.forEach) { Array.pr ...
- Excel中Application和ApplicationClass的区别
Application和ApplicationClass的联系和区别Application和ApplicationClass都继承自接口_Application.Application为接口.Appl ...
