『Kaggle』分类任务_决策树&集成模型&DataFrame向量化操作

1
2
3
4
5
6
7
8
9
'''特征提取器'''
from sklearn.feature_extraction import DictVectorizer
 
vec = DictVectorizer(sparse=False)
print(X_train.to_dict(orient='record'))
X_train = vec.fit_transform(X_train.to_dict(orient='record'))
print(X_train)
print(vec.feature_names_)
X_test = vec.transform(X_test.to_dict(orient='record'))

  

涉及两个操作,

  • DataFrame字典化
  • 字典向量化

1.DataFrame字典化

1
2
3
4
5
6
7
8
9
10
import numpy as np
import pandas as pd
 
index = ['x', 'y']
columns = ['a','b','c']
 
dtype = [('a','int32'), ('b','float32'), ('c','float32')]
values = np.zeros(2, dtype=dtype)
df = pd.DataFrame(values, index=index)
df.to_dict(orient='record')

2.字典向量化

DictVectorizer: 将dict类型的list数据,转换成numpy array,具有属性vec.feature_names_,查看提取后的特征名。

具体效果如下,

>>> from sklearn.feature_extraction import DictVectorizer
>>> v = DictVectorizer(sparse=False)
>>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]
>>> X = v.fit_transform(D)
>>> X
array([[ 2., 0., 1.],
[ 0., 1., 3.]])
>>> v.transform({'foo': 4, 'unseen_feature': 3})
array([[ 0., 0., 4.]])

数字的特征不变,没有该特征的项给赋0,对于未参与训练的特征不予考虑。

对应到本程序,

print(X_train.to_dict(orient='record')):

[{'sex': 'male', 'pclass': '3rd', 'age': 31.19418104265403},

...... ....... ....... ......

{'sex': 'female', 'pclass': '1st', 'age': 31.19418104265403}]

提取特征,

X_train = vec.fit_transform(X_train.to_dict(orient='record'))
print(X_train):

[[ 31.19418104 0. 0. 1. 0. 1. ]
[ 31.19418104 1. 0. 0. 1. 0. ]
[ 31.19418104 0. 0. 1. 0. 1. ]
...,
[ 12. 0. 1. 0. 1. 0. ]
[ 18. 0. 1. 0. 0. 1. ]
[ 31.19418104 0. 0. 1. 1. 0. ]]

数字的年龄没有改变,其他obj特征变成了onehot编码的特征,各列意义可以查看的,

print(vec.feature_names_):

['age', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', 'sex=female', 'sex=male']

一个直观例子:

v = DictVectorizer(sparse=False)
v.fit_transform([{'a':1},{'a':2},{'a':3}])
Out[7]:
array([[ 1.],
       [ 2.],
       [ 3.]])
v.feature_names_
Out[8]:
['a']
v.fit_transform([{'a':'1'},{'a':'2'},{'a':'3'}])
Out[9]:
array([[ 1.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  1.]])
v.feature_names_
Out[10]:
['a=1', 'a=2', 'a=3']

注意,v.feature_names_输出顺序和v.fit_transform()生成顺序是一一对应的,

v.fit_transform([{'a':'2q'},{'a':'1v'},{'a':'3t'},{'a':'3t'}])
Out[17]:
array([[ 0.,  1.,  0.],
       [ 1.,  0.,  0.],
       [ 0.,  0.,  1.],
       [ 0.,  0.,  1.]])
v.feature_names_
Out[18]:
['a=1v', 'a=2q', 'a=3t']

然后,

np.argmax(np.array([[ 0.,  1.,  0.],
       [ 1.,  0.,  0.],
       [ 0.,  0.,  1.],
       [ 0.,  0.,  1.]]),axis=1)
Out[19]:
array([1, 0, 2, 2])

进一步的,也就是说v.feature_names_输出顺序对应于v.fit_transform()的非onehot排序。

『Sklearn』特征向量化处理的更多相关文章

  1. 『Sklearn』框架自带数据集接口

    自带数据集类型如下: # 自带小型数据集# sklearn.datasets.load_<name># 在线下载数据集# sklearn.datasets.fetch_<name&g ...

  2. 『Sklearn』数据划分方法

    原理介绍 K折交叉验证: KFold,GroupKFold,StratifiedKFold, 留一法: LeaveOneGroupOut,LeavePGroupsOut,LeaveOneOut,Lea ...

  3. 『TensorFlow』读书笔记_降噪自编码器

    『TensorFlow』降噪自编码器设计  之前学习过的代码,又敲了一遍,新的收获也还是有的,因为这次注释写的比较详尽,所以再次记录一下,具体的相关知识查阅之前写的文章即可(见上面链接). # Aut ...

  4. 『TensorFlow』读书笔记_VGGNet

    VGGNet网络介绍 VGG系列结构图, 『cs231n』卷积神经网络工程实践技巧_下 1,全部使用3*3的卷积核和2*2的池化核,通过不断加深网络结构来提升性能. 所有卷积层都是同样大小的filte ...

  5. 『计算机视觉』Mask-RCNN_从服装关键点检测看KeyPoints分支

    下图Github地址:Mask_RCNN       Mask_RCNN_KeyPoints『计算机视觉』Mask-RCNN_论文学习『计算机视觉』Mask-RCNN_项目文档翻译『计算机视觉』Mas ...

  6. 『TensotFlow』RNN中文文本_上

    中文文字预处理流程 文本处理 读取+去除特殊符号 按照字段长度排序 辅助数据结构生成 生成 {字符:出现次数} 字典 生成按出现次数排序好的字符list 生成 {字符:序号} 字典 生成序号list ...

  7. 『cs231n』通过代码理解风格迁移

    『cs231n』卷积神经网络的可视化应用 文件目录 vgg16.py import os import numpy as np import tensorflow as tf from downloa ...

  8. 『计算机视觉』Mask-RCNN_锚框生成

    Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』M ...

  9. 『计算机视觉』Mask-RCNN_推断网络其六:Mask生成

    一.Mask生成概览 上一节的末尾,我们已经获取了待检测图片的分类回归信息,我们将回归信息(即待检测目标的边框信息)单独提取出来,结合金字塔特征mrcnn_feature_maps,进行Mask生成工 ...

随机推荐

  1. eclispe 相关设置

    1. 关闭js文件校验: 1). windows->preference->Java Script->Validator->Errors/Warnings->Enable ...

  2. 【翻唱】白金disco

    http://video.yingtu.co/0/bbea91f8-e1ce-4211-9519-2371745f4ec0.mp4 [翻唱]白金disco

  3. MySQL Crash Course #21# Chapter 29.30. Database Maintenance & Improving Performance

    终于结束这本书了,最后两章的内容在官方文档中都有详细介绍,简单过一遍.. 首先是数据备份,最简单直接的就是用 mysql 的内置工具 mysqldump MySQL 8.0 Reference Man ...

  4. 各种语言中的可变参数(java、python、c++、javascript)

    索引: java python c++ js 1.Java public class Animal { // 接受可变参数的方法 void eat(String... Objects) { for ( ...

  5. 高并发下,php使用uniqid函数生成唯一标识符的四种方案

    PHP uniqid()函数可用于生成不重复的唯一标识符,该函数基于微秒级当前时间戳.在高并发或者间隔时长极短(如循环代码)的情况下,会出现大量重复数据.即使使用了第二个参数,也会重复,最好的方案是结 ...

  6. curl 7.52.1 for Windows

    curl是利用URL语法在命令行方式下工作的开源文件传输工具.它被广泛应用在Unix.多种Linux发行版中,并且有DOS和Win32.Win64下的移植版本. 这个工具对于在运维.持续集成和批处理场 ...

  7. 20145336 张子扬 《网络对抗技术》web基础

    20145336张子扬<网络对抗>Exp8 Web基础 实践内容 1.简单的web前端页面(HTML.CSS等) 2.简单的web后台数据处理(PHP) 3.Mysql数据库 4.一个简单 ...

  8. EditText输入属性

    1. android:inputType="none" android:inputType="text" android:inputType="tex ...

  9. hdu Naive Operations 线段树

    题目大意 题目链接Naive Operations 题目大意: 区间加1(在a数组中) 区间求ai/bi的和 ai初值全部为0,bi给出,且为n的排列,多组数据(<=5),n,q<=1e5 ...

  10. 骗访问量的机房人物列传by xMinh

    作者:$xMinh$ 人物列传·Refun(Aufun,虚凡,人赢) 机房最人赢的人赢,上过表白墙的男人 在宿舍公然开设情感讲座和人赢培训班,教学成果显著,他的徒弟要么gay了要么凉了 认识的人极其广 ...