『Kaggle』分类任务_决策树&集成模型&DataFrame向量化操作

1
2
3
4
5
6
7
8
9
'''特征提取器'''
from sklearn.feature_extraction import DictVectorizer
 
vec = DictVectorizer(sparse=False)
print(X_train.to_dict(orient='record'))
X_train = vec.fit_transform(X_train.to_dict(orient='record'))
print(X_train)
print(vec.feature_names_)
X_test = vec.transform(X_test.to_dict(orient='record'))

  

涉及两个操作,

  • DataFrame字典化
  • 字典向量化

1.DataFrame字典化

1
2
3
4
5
6
7
8
9
10
import numpy as np
import pandas as pd
 
index = ['x', 'y']
columns = ['a','b','c']
 
dtype = [('a','int32'), ('b','float32'), ('c','float32')]
values = np.zeros(2, dtype=dtype)
df = pd.DataFrame(values, index=index)
df.to_dict(orient='record')

2.字典向量化

DictVectorizer: 将dict类型的list数据,转换成numpy array,具有属性vec.feature_names_,查看提取后的特征名。

具体效果如下,

>>> from sklearn.feature_extraction import DictVectorizer
>>> v = DictVectorizer(sparse=False)
>>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]
>>> X = v.fit_transform(D)
>>> X
array([[ 2., 0., 1.],
[ 0., 1., 3.]])
>>> v.transform({'foo': 4, 'unseen_feature': 3})
array([[ 0., 0., 4.]])

数字的特征不变,没有该特征的项给赋0,对于未参与训练的特征不予考虑。

对应到本程序,

print(X_train.to_dict(orient='record')):

[{'sex': 'male', 'pclass': '3rd', 'age': 31.19418104265403},

...... ....... ....... ......

{'sex': 'female', 'pclass': '1st', 'age': 31.19418104265403}]

提取特征,

X_train = vec.fit_transform(X_train.to_dict(orient='record'))
print(X_train):

[[ 31.19418104 0. 0. 1. 0. 1. ]
[ 31.19418104 1. 0. 0. 1. 0. ]
[ 31.19418104 0. 0. 1. 0. 1. ]
...,
[ 12. 0. 1. 0. 1. 0. ]
[ 18. 0. 1. 0. 0. 1. ]
[ 31.19418104 0. 0. 1. 1. 0. ]]

数字的年龄没有改变,其他obj特征变成了onehot编码的特征,各列意义可以查看的,

print(vec.feature_names_):

['age', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', 'sex=female', 'sex=male']

一个直观例子:

v = DictVectorizer(sparse=False)
v.fit_transform([{'a':1},{'a':2},{'a':3}])
Out[7]:
array([[ 1.],
       [ 2.],
       [ 3.]])
v.feature_names_
Out[8]:
['a']
v.fit_transform([{'a':'1'},{'a':'2'},{'a':'3'}])
Out[9]:
array([[ 1.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  1.]])
v.feature_names_
Out[10]:
['a=1', 'a=2', 'a=3']

注意,v.feature_names_输出顺序和v.fit_transform()生成顺序是一一对应的,

v.fit_transform([{'a':'2q'},{'a':'1v'},{'a':'3t'},{'a':'3t'}])
Out[17]:
array([[ 0.,  1.,  0.],
       [ 1.,  0.,  0.],
       [ 0.,  0.,  1.],
       [ 0.,  0.,  1.]])
v.feature_names_
Out[18]:
['a=1v', 'a=2q', 'a=3t']

然后,

np.argmax(np.array([[ 0.,  1.,  0.],
       [ 1.,  0.,  0.],
       [ 0.,  0.,  1.],
       [ 0.,  0.,  1.]]),axis=1)
Out[19]:
array([1, 0, 2, 2])

进一步的,也就是说v.feature_names_输出顺序对应于v.fit_transform()的非onehot排序。

『Sklearn』特征向量化处理的更多相关文章

  1. 『Sklearn』框架自带数据集接口

    自带数据集类型如下: # 自带小型数据集# sklearn.datasets.load_<name># 在线下载数据集# sklearn.datasets.fetch_<name&g ...

  2. 『Sklearn』数据划分方法

    原理介绍 K折交叉验证: KFold,GroupKFold,StratifiedKFold, 留一法: LeaveOneGroupOut,LeavePGroupsOut,LeaveOneOut,Lea ...

  3. 『TensorFlow』读书笔记_降噪自编码器

    『TensorFlow』降噪自编码器设计  之前学习过的代码,又敲了一遍,新的收获也还是有的,因为这次注释写的比较详尽,所以再次记录一下,具体的相关知识查阅之前写的文章即可(见上面链接). # Aut ...

  4. 『TensorFlow』读书笔记_VGGNet

    VGGNet网络介绍 VGG系列结构图, 『cs231n』卷积神经网络工程实践技巧_下 1,全部使用3*3的卷积核和2*2的池化核,通过不断加深网络结构来提升性能. 所有卷积层都是同样大小的filte ...

  5. 『计算机视觉』Mask-RCNN_从服装关键点检测看KeyPoints分支

    下图Github地址:Mask_RCNN       Mask_RCNN_KeyPoints『计算机视觉』Mask-RCNN_论文学习『计算机视觉』Mask-RCNN_项目文档翻译『计算机视觉』Mas ...

  6. 『TensotFlow』RNN中文文本_上

    中文文字预处理流程 文本处理 读取+去除特殊符号 按照字段长度排序 辅助数据结构生成 生成 {字符:出现次数} 字典 生成按出现次数排序好的字符list 生成 {字符:序号} 字典 生成序号list ...

  7. 『cs231n』通过代码理解风格迁移

    『cs231n』卷积神经网络的可视化应用 文件目录 vgg16.py import os import numpy as np import tensorflow as tf from downloa ...

  8. 『计算机视觉』Mask-RCNN_锚框生成

    Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』M ...

  9. 『计算机视觉』Mask-RCNN_推断网络其六:Mask生成

    一.Mask生成概览 上一节的末尾,我们已经获取了待检测图片的分类回归信息,我们将回归信息(即待检测目标的边框信息)单独提取出来,结合金字塔特征mrcnn_feature_maps,进行Mask生成工 ...

随机推荐

  1. IO(基础知识)

        IO流类的构造方法决定是输入流还是输出流.输入流连接一个文件,它会将文件中的内容读到流里面,read方法是将流里面的内容     往外读.输出流连接一个文件,它的write方法,是将内存中的内 ...

  2. Linux服务器---安装jdk

    安装jdk jdk是运行或者开发java的必须工具,很多软件都会依赖jdk,因此必须学会安装jdk 1.查看当前系统的jdk情况 [root@localhost wj]# rpm -qa | grep ...

  3. web前端----Bootstrap框架补充

    一.一个小知识点 1.截取长屏的操作 2.设置默认格式 3.md,sm, xs 4.空格和没有空格的选择器 二.响应式介绍 - 响应式布局是什么? 同一个网页在不同的终端上呈现不同的布局等- 响应式怎 ...

  4. MySQL数据库----IDE工具介绍及数据备份

    一.IDE工具介绍 生产环境还是推荐使用mysql命令行,但为了方便我们测试,可以使用IDE工具 下载链接:https://pan.baidu.com/s/1bpo5mqj 二.MySQL数据备份 # ...

  5. P1661 扩散

    P1661 扩散 二分+最小生成树(kruskal使用并查集) 不清楚的题意导致我被坑了qwq,其实间接联通也是允许的.所以可以使用并查集+最小生成树维护 每次二分答案,然后跑一遍最小生成树判断是否联 ...

  6. P2503 [HAOI2006]均分数据

    P2503 [HAOI2006]均分数据 模拟退火+dp (不得不说,我今天欧气爆棚) 随机出1个数列,然后跑一遍dp统计 #include<iostream> #include<c ...

  7. Class<T>

    首先,什么是类类型? 可见: https://www.cnblogs.com/yanze/p/9717658.html Class<T>即T的类类型 如何获取Class<T>? ...

  8. 20145104张家明 《Java程序设计》第7周学习总结

    20145104张家明 <Java程序设计>第7周学习总结 教材学习内容总结 第13章 简单认识时间和日期 -时间的度量:GMT.UT.TAI.UTC.Unix.epoch. -UTC:保 ...

  9. 20145106java实验四

    实验名称:Java网络编程 实验内容: 1.掌握Socket程序的编写: 2.掌握密码技术的使用: 3.设计安全传输系统. 结对小伙伴 20145109竺文君 博客地址: 在本次实验中,是以我作为服务 ...

  10. TI 实时操作系统SYS/BIOS使用总结

    1:概述: SYS/BIOS 是一个可扩展的实时的操作系统.具有非常快速的响应时间(在中断和任务切换时达到较短的延迟),响应时间的确定性,强壮的抢占系统,优化的内存分配和堆栈管理(尽量少的消耗和碎片) ...