线性分类器损失函数明细:

『cs231n』线性分类器损失函数

最优化Optimiz部分代码:

1.随机搜索

bestloss = float('inf')  # 无穷大
for num in range(1000):
W = np.random.randn(10, 3073) * 0.0001
loss = L(X_train, Y_train, W)
if loss < bestloss:
bestloss = loss
bestW = W scores = bsetW.dot(Xte_cols)
Yte_predict = np.argmax(score, axis = 0)
np.mean(Yte_predict == Yte)

核心思路:迭代优化

2.随机本地搜索

W = np.random.randn(10, 3073) * 0.001
bestloss = float('inf')
for i in range(1000):
step_size = 0.0001
Wtry = np.random.randn(10, 3073) * step_size
loss = L(Xtr_cols, Ytr, Wtry)
if loss < bestloss:
W = Wtry
bestloss = loss

3.利用有限差值计算梯度(数值计算梯度)

def eval_numerical_gradient(f, x):
"""
一个f在x处的数值梯度法的简单实现
- f是只有一个参数的函数
- x是计算梯度的点
""" fx = f(x) # 在原点计算函数值
grad = np.zeros(x.shape)
h = 0.00001 # 对x中所有的索引进行迭代
it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished: # 计算x+h处的函数值
ix = it.multi_index
old_value = x[ix]
x[ix] = old_value + h # 增加h
fxh = f(x) # 计算f(x + h)
x[ix] = old_value # 存到前一个值中 (非常重要) # 计算偏导数
grad[ix] = (fxh - fx) / h # 坡度
it.iternext() # 到下个维度 return grad

One_Hot编码

a 0,0,0,1

b 0,0,1,0

c 0,1,0,0

d 1,0,0,0

这样

数据优化另一个方面

下面的代码理论上输出1.0,实际输出0.95,也就是说在数值偏大的时候计算会不准

a = 10**9
for i in range(10**6):
a = a + 1e-6
print (a - 10**9) # 0.95367431640625

所以会有优化初始数据的过程,最好使均值为0,方差相同:

以红色通道为例:(R-128)/128

稀疏矩阵

0元素很多的矩阵是稀疏矩阵,便于优化(收敛速度快)有一种说法是提取单一特征时不需要同时激活那么多的神经元,所以抑制其他神经元效果反而更好L1正则化是一种常用稀疏化手段

L2正则化由于加了平方,所以权重影响项可以很接近零,反而不会被继续优化到0,没有稀疏的效果。()

『cs231n』计算机视觉基础的更多相关文章

  1. 『cs231n』通过代码理解风格迁移

    『cs231n』卷积神经网络的可视化应用 文件目录 vgg16.py import os import numpy as np import tensorflow as tf from downloa ...

  2. 『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上

    GAN网络架构分析 上图即为GAN的逻辑架构,其中的noise vector就是特征向量z,real images就是输入变量x,标签的标准比较简单(二分类么),real的就是tf.ones,fake ...

  3. 『cs231n』绪论

    笔记链接 cs231n系列所有图片笔记均拷贝自网络,链接如上,特此声明,后篇不再重复. 计算机视觉历史 总结出视觉两个重要结论:1.基础的视觉神经识别的是简单的边缘&轮廓2.视觉是分层的 数据 ...

  4. 『cs231n』卷积神经网络的可视化与进一步理解

    cs231n的第18课理解起来很吃力,听后又查了一些资料才算是勉强弄懂,所以这里贴一篇博文(根据自己理解有所修改)和原论文的翻译加深加深理解,其中原论文翻译比博文更容易理解,但是太长,而博文是业者而非 ...

  5. 『cs231n』视频数据处理

    视频信息 和我之前的臆想不同,视频数据不仅仅是一帧一帧的图片本身,还包含个帧之间的联系,也就是还有一个时序的信息维度,包含人的动作判断之类的任务都是要依赖动作的时序信息的 视频数据处理的两种基本方法 ...

  6. 『cs231n』作业1选讲_通过代码理解KNN&交叉验证&SVM

    通过K近邻算法探究numpy向量运算提速 茴香豆的“茴”字有... ... 使用三种计算图片距离的方式实现K近邻算法: 1.最为基础的双循环 2.利用numpy的broadca机制实现单循环 3.利用 ...

  7. 『cs231n』卷积神经网络工程实践技巧_上

    概述 数据增强 思路:在训练的时候引入干扰,在测试的时候避免干扰. 翻转图片增强数据. 随机裁切图片后调整大小用于训练,测试时先图像金字塔制作不同尺寸,然后对每个尺寸在固定位置裁切固定大小进入训练,最 ...

  8. 『cs231n』作业3问题3选讲_通过代码理解图像梯度

    Saliency Maps 这部分想探究一下 CNN 内部的原理,参考论文 Deep Inside Convolutional Networks: Visualising Image Classifi ...

  9. 『cs231n』RNN之理解LSTM网络

    概述 LSTM是RNN的增强版,1.RNN能完成的工作LSTM也都能胜任且有更好的效果:2.LSTM解决了RNN梯度消失或爆炸的问题,进而可以具有比RNN更为长时的记忆能力.LSTM网络比较复杂,而恰 ...

随机推荐

  1. STM8S003F3通过PWM波实现三基色呼吸灯(转)

    源: STM8S003F3通过PWM波实现三基色呼吸灯

  2. Google's Machine Learning Crash Course #01# Introducing ML & Framing & Fundamental terminology

    INDEX Introducing ML Framing Fundamental machine learning terminology Introducing ML What you learn ...

  3. Kafka学习之(六)搭建kafka集群

    想要搭建kafka集群,必须具备zookeeper集群,关于zookeeper集群的搭建,在Kafka学习之(五)搭建kafka集群之Zookeeper集群搭建博客有说明.需要具备两台以上装有zook ...

  4. this逃逸

    首先,什么是this逃逸? this逃逸是指类构造函数在返回实例之前,线程便持有该对象的引用. 常发生于在构造函数中启动线程或注册监听器. eg: public class ThisEscape { ...

  5. 20145318《网络对抗》注入shellcode及Return-to-libc

    20145318<网络对抗>注入shellcode及Return-to-libc 注入shellcode 知识点 注入shellcodeShellcode实际是一段代码(也可以是填充数据) ...

  6. 20145324王嘉澜《网络对抗技术》Web基础

    实践要求 ①Web前端HTML: 能正常安装.启停Apache.理解HTML,理解表单,理解GET与POST方法,编写一个含有表单的HTML ②Web前端javascipt: 理解JavaScript ...

  7. 20145319 《网络渗透》URL攻击

    20145319 <网络渗透>URL攻击 实验步骤 首先启动apache2,打开我们的钓鱼网页,键入命令/etc/init.d/apache2 start 在浏览器中尝试着访问自己的ip地 ...

  8. ubuntu16.04下无线网卡无法正常连网

    背景:无线网卡初次连接可以正常上网,但是用了一会儿就会出现无法上网的情况 版本: Ubuntu 16.04 一.分析: 1.使用ifconfig命令发现不会显示无线网卡,说明无线网卡被关闭,笔者输出的 ...

  9. linux提示usb_serial_generic_write_bulk_callback - urb stoped: -32

    1.环境: 上位机:ubuntu16.04 Linux jello 4.4.0-89-generic #112-Ubuntu SMP Mon Jul 31 19:38:41 UTC 2017 x86_ ...

  10. BZOJ 5424: 烧桥计划

    BZOJ 5424: 烧桥计划 目前暂居rk1QAQ 首先,设\(f[i][k]\)为前i个点中,选了第i个点,总共选了k个点的答案.那么就有: \[f[i][k]=min_{j<i}\{f[j ...