『cs231n』计算机视觉基础

线性分类器损失函数明细:
最优化Optimiz部分代码:
1.随机搜索
bestloss = float('inf') # 无穷大
for num in range(1000):
W = np.random.randn(10, 3073) * 0.0001
loss = L(X_train, Y_train, W)
if loss < bestloss:
bestloss = loss
bestW = W
scores = bsetW.dot(Xte_cols)
Yte_predict = np.argmax(score, axis = 0)
np.mean(Yte_predict == Yte)
核心思路:迭代优化
2.随机本地搜索
W = np.random.randn(10, 3073) * 0.001
bestloss = float('inf')
for i in range(1000):
step_size = 0.0001
Wtry = np.random.randn(10, 3073) * step_size
loss = L(Xtr_cols, Ytr, Wtry)
if loss < bestloss:
W = Wtry
bestloss = loss
3.利用有限差值计算梯度(数值计算梯度)
def eval_numerical_gradient(f, x):
"""
一个f在x处的数值梯度法的简单实现
- f是只有一个参数的函数
- x是计算梯度的点
""" fx = f(x) # 在原点计算函数值
grad = np.zeros(x.shape)
h = 0.00001 # 对x中所有的索引进行迭代
it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished: # 计算x+h处的函数值
ix = it.multi_index
old_value = x[ix]
x[ix] = old_value + h # 增加h
fxh = f(x) # 计算f(x + h)
x[ix] = old_value # 存到前一个值中 (非常重要) # 计算偏导数
grad[ix] = (fxh - fx) / h # 坡度
it.iternext() # 到下个维度 return grad
One_Hot编码
a 0,0,0,1
b 0,0,1,0
c 0,1,0,0
d 1,0,0,0
这样
数据优化另一个方面
下面的代码理论上输出1.0,实际输出0.95,也就是说在数值偏大的时候计算会不准
a = 10**9
for i in range(10**6):
a = a + 1e-6
print (a - 10**9) # 0.95367431640625
所以会有优化初始数据的过程,最好使均值为0,方差相同:
以红色通道为例:(R-128)/128
稀疏矩阵
0元素很多的矩阵是稀疏矩阵,便于优化(收敛速度快)有一种说法是提取单一特征时不需要同时激活那么多的神经元,所以抑制其他神经元效果反而更好L1正则化是一种常用稀疏化手段
『cs231n』计算机视觉基础的更多相关文章
- 『cs231n』通过代码理解风格迁移
『cs231n』卷积神经网络的可视化应用 文件目录 vgg16.py import os import numpy as np import tensorflow as tf from downloa ...
- 『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上
GAN网络架构分析 上图即为GAN的逻辑架构,其中的noise vector就是特征向量z,real images就是输入变量x,标签的标准比较简单(二分类么),real的就是tf.ones,fake ...
- 『cs231n』绪论
笔记链接 cs231n系列所有图片笔记均拷贝自网络,链接如上,特此声明,后篇不再重复. 计算机视觉历史 总结出视觉两个重要结论:1.基础的视觉神经识别的是简单的边缘&轮廓2.视觉是分层的 数据 ...
- 『cs231n』卷积神经网络的可视化与进一步理解
cs231n的第18课理解起来很吃力,听后又查了一些资料才算是勉强弄懂,所以这里贴一篇博文(根据自己理解有所修改)和原论文的翻译加深加深理解,其中原论文翻译比博文更容易理解,但是太长,而博文是业者而非 ...
- 『cs231n』视频数据处理
视频信息 和我之前的臆想不同,视频数据不仅仅是一帧一帧的图片本身,还包含个帧之间的联系,也就是还有一个时序的信息维度,包含人的动作判断之类的任务都是要依赖动作的时序信息的 视频数据处理的两种基本方法 ...
- 『cs231n』作业1选讲_通过代码理解KNN&交叉验证&SVM
通过K近邻算法探究numpy向量运算提速 茴香豆的“茴”字有... ... 使用三种计算图片距离的方式实现K近邻算法: 1.最为基础的双循环 2.利用numpy的broadca机制实现单循环 3.利用 ...
- 『cs231n』卷积神经网络工程实践技巧_上
概述 数据增强 思路:在训练的时候引入干扰,在测试的时候避免干扰. 翻转图片增强数据. 随机裁切图片后调整大小用于训练,测试时先图像金字塔制作不同尺寸,然后对每个尺寸在固定位置裁切固定大小进入训练,最 ...
- 『cs231n』作业3问题3选讲_通过代码理解图像梯度
Saliency Maps 这部分想探究一下 CNN 内部的原理,参考论文 Deep Inside Convolutional Networks: Visualising Image Classifi ...
- 『cs231n』RNN之理解LSTM网络
概述 LSTM是RNN的增强版,1.RNN能完成的工作LSTM也都能胜任且有更好的效果:2.LSTM解决了RNN梯度消失或爆炸的问题,进而可以具有比RNN更为长时的记忆能力.LSTM网络比较复杂,而恰 ...
随机推荐
- MyEclipse 相关设置
1. MyElipse复制项目后,修改项目的发布名称的方式.右击你的项目,选择 properties -- > MyElipse -- > web,然后修改名称即可. 2. IDE查看源代 ...
- Linux基础命令---sudo
sudo sudo允许用户以超级用户或安全策略指定的另一个用户的身份执行命令.Sudo支持安全策略插件和输入/输出日志的插件.第三方可以开发和分发自己的策略和I/O日志插件,以便与sudo前端无缝地工 ...
- c/c++日期时间处理与字符串string转换
转自:https://www.cnblogs.com/renjiashuo/p/6913668.html 在c/c++实际问题的编程中,我们经常会用到日期与时间的格式,在算法运行中,通常将时间转化为i ...
- 为自己的网站添加Markdown功能 markedjs
Markdown几个简单的标记可以实现轻量级的代替Word方案 不多说,引入开源库js https://github.com/chjj/marked使用方式简单,如下实例代码: <!DOCTYP ...
- JWT(Json web token)认证详解
JWT(Json web token)认证详解 什么是JWT Json web token (JWT), 是为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准((RFC 7519).该to ...
- phonegap 开发案例
PhoneGap-Android-HTML5-WebSocket 不使用任何框架,教你制作网页滑动切换效果 http://www.csdn.net/article/2012-04-17/2804644 ...
- JCTools, 场景特化的并发工具
同上一篇一样,在jmap -histo中发现MpscChunkedArrayQueue类的实例比较多,javadoc看了下,其原来是出自JC Tools,https://github.com/JCTo ...
- c++builder ZIP文件解压与压缩(ZLIB DLL调用)(转载 )
转载:http://blog.csdn.net/goodai007/article/details/7414512 头文件:ZipAndFile.h //----------------------- ...
- Django框架(四) Django之视图层
视图函数 一个视图函数,简称视图,是一个简单的Python 函数,它接受Web请求并且返回Web响应.响应可以是一张网页的HTML内容,一个重定向,一个404错误,一个XML文档,或者一张图片. . ...
- 多线程中的信号机制--signwait()函数【转】
本文转载自:http://blog.csdn.net/yusiguyuan/article/details/14237277 在Linux的多线程中使用信号机制,与在进程中使用信号机制有着根本的区别, ...