若$1$到$n$之间没有其它点,则$1$到$n$的距离为任意一点到它们距离的差值,按照距离关系判断每个点是挂在$1$上还是挂在$n$上即可。

否则$1$到$n$的距离只可能为任意一点到它们距离和的最小值,抽出$1$到$n$路径上所有点后,对于剩下的每个点判断它应该挂在那个点下面即可。

时间复杂度$O(n\log n)$。

#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
const int N=500010;
int n,i,o,w,t,a[N],b[N],q[N],v[N<<1],f[N],g[N];
inline bool cmp(int x,int y){return a[x]+b[x]==a[y]+b[y]?a[x]<a[y]:a[x]+b[x]<a[y]+b[y];}
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
void NIE(){puts("NIE");exit(0);}
void check(int len){
if(!len)return;
for(int i=2;i<n;i++)if(abs(a[i]-b[i])!=len)return;
puts("TAK");
printf("1 %d %d\n",n,len);
for(int i=2;i<n;i++){
if(a[i]<b[i])printf("1 %d %d\n",i,a[i]);
else printf("%d %d %d\n",n,i,b[i]);
}
exit(0);
}
int main(){
read(n);
for(i=2;i<n;i++)read(a[i]);
for(i=2;i<n;i++)read(b[i]);
if(n==2){
puts("TAK");
puts("1 2 1");
return 0;
}
check(abs(a[2]-b[2]));
for(i=1;i<n;i++)q[i]=i;
sort(q+2,q+n,cmp);
w=a[q[2]]+b[q[2]];
for(o=2;o<n;o++)if(a[q[o]]+b[q[o]]!=w)break;
o--;
for(i=2;i<o;i++)if(a[q[i]]==a[q[i+1]])NIE();
for(v[w]=n,i=1;i<=o;i++)v[a[q[i]]]=q[i];
for(i=o+1;i<n;i++){
t=a[q[i]]+b[q[i]]-w;
if(t&1)NIE();
t>>=1;
f[i]=v[a[q[i]]-t],g[i]=t;
if(!f[i])NIE();
}
puts("TAK");
for(i=2;i<=o;i++)printf("%d %d %d\n",q[i-1],q[i],a[q[i]]-a[q[i-1]]);
printf("%d %d %d\n",q[o],n,b[q[o]]);
for(;i<n;i++)printf("%d %d %d\n",q[i],f[i],g[i]);
return 0;
}

  

BZOJ5100 : [POI2018]Plan metra的更多相关文章

  1. bzoj5100 [POI2018]Plan metra 构造

    5100: [POI2018]Plan metra Time Limit: 40 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 189  Sol ...

  2. bzoj千题计划249:bzoj5100: [POI2018]Plan metra

    http://www.lydsy.com/JudgeOnline/problem.php?id=5100 1.找到d1[i]+dn[i] 最小的点,作为1到n链上的点 2.令链长为D,若abs(d1[ ...

  3. 【BZOJ5100】[POI2018]Plan metra 构造

    [BZOJ5100][POI2018]Plan metra Description 有一棵n个点的无根树,每条边有一个正整数权值,表示长度,定义两点距离为在树上的最短路径的长度. 已知2到n-1每个点 ...

  4. [POI2018]Plan metra

    题目大意: 一棵$n(n\le5\times10^5)$个结点的树,每条边的边权均为正整数,告诉你$2\sim n-1$号结点到$1$号点和$n$号点的距离$d1[i]$和$d2[i]$.求是否存在这 ...

  5. 题解【洛谷P5959】[POI2018]Plan metra

    题面 一道比较神仙的构造题. 首先确定 \(1\) 到 \(n\) 的路径长度,不妨设其长为 \(m\) . 通过观察发现,\(m\) 就是 \(\min_{1<i<n}\{dist_{1 ...

  6. [POI 2018] Plan Metra

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=5100 [算法] 首先分两类考虑 : 1. 1 -> N的路径不经过其它节点 , ...

  7. POI2018

    [BZOJ5099][POI2018]Pionek(极角排序+two pointers) 几个不会严谨证明的结论: 1.将所有向量按极角排序,则答案集合一定是连续的一段. 当答案方向确定时,则一个向量 ...

  8. BZOJ5100 POI2018Plan metra(构造)

    容易发现要么1和n直接相连,要么两点距离即为所有dx,1+dx,n的最小值.若为前者,需要满足所有|d1-dn|都相等,挂两棵菊花即可.若为后者,将所有满足dx,1+dx,n=d1,n的挂成一条链,其 ...

  9. 测试计划(Test Plan)

    测试计划(Test Plan) 版权声明:本文为博主原创文章,未经博主允许不得转载. 测试计划的概念: 测试计划是一个文档,描述了进行测试的测试范围,测试策略和方法,测试资源和进度.是对整个测试活动进 ...

随机推荐

  1. 论文阅读笔记三十一:YOLO 9000: Better,Faster,Stronger(CVPR2016)

    论文源址:https://arxiv.org/abs/1612.08242 代码:https://github.com/longcw/yolo2-pytorch 摘要 本文提出YOLO9000可以检测 ...

  2. tempalte模板

    tempalte模板层: 功能:为了更有逻辑的将数据库中的数据渲染到模板中: 模拟数据源: DB = [ {"hostname":"c1.com"," ...

  3. Java生成生成密码类

    import java.util.Date; import java.util.Random; public class PasswordUtil { public final static Stri ...

  4. Spring Boot配置大全

    Spring Boot项目使用一个全局的配置文件application.properties或者是application.yml,在resources目录下或者类路径下的/config下,一般我们放到 ...

  5. 分享几个在线生成网址二维码的API接口

    现在很多大网站都有这样的一个功能,使用手机扫描一下网页上的二维码便可快速在手机上访问网站.想要实现这样的功能其实很简单,下面麦布分享几个在线生成网址二维码的API接口.都是采用http协议接口,无需下 ...

  6. ip访问网站和localhost访问网站中top使用

    对于相对定位,使用margin-top不用简单使用top. top在localhost中能正常显示,在ip访问时会出现多余空白. margin-top不管是localhost中还是ip中都能正常显示.

  7. JMeter实现Oracle参数化(1)

    http://www.ithao123.cn/content-10469577.html

  8. pycharm中出现的错误

    错误1 在pycharm上安装TensorFlow运行import tensorflow时报错: File , in _find_and_load SystemError: PyEval_EvalFr ...

  9. 空间数据可视化:1. 3D_Bar图表| 空间柱状图

    1.Sublime的使用 中文版的配置 https://jingyan.baidu.com/article/ca2d939d1e83feeb6c31cefc.html (百度经验) sublime里边 ...

  10. Noj - 在线强化训练1

      1445 A 求n个整数的和   1564 B 判断一个数是否是完全数   1011 C 判素数(Prime number)   1566 D 输入一组整数,找出最小值   1200 E 判断三角 ...