N!

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)

Total Submission(s): 88267    Accepted Submission(s): 26008

Problem Description

Given an integer N(0 ≤ N ≤ 10000), your task is to calculate N!

Input

One N in one line, process to the end of file.

Output

For each N, output N! in one line.

Sample Input

1

2

3

Sample Output

1

2

6

(这个题用JAVA更好)

用java:

import java.math.BigInteger;

import java.util.Scanner;

public class Main {

    public static void main(String[] args) {

        Scanner in = new Scanner (System.in);

        int n;

        while(in.hasNextInt()) {

            n=in.nextInt();

            BigInteger a=BigInteger.ONE;

            for(int i=1;i<=n;i++)

                a=a.multiply(BigInteger.valueOf(i));

            System.out.println(a);

        }

    }

}

这个思路是从其他博客上看到的。。。

思路:

万进制:

这题也让我有了点想法。我们经常用的进制就是2进制、8进制、10进制和16进制。何来“万进制”?世上本无,有人喊了也就有了。呵呵

现在来谈谈自己对进制的一点不成熟的想法。计算机能“识别”0和1,人能识别0、1、2、3、4、5、6、7、8、9以及其多位组合。那么,

为啥就单单有2、8、10、16这几个进制。我想并不止这几个,10进制是我们日常生活沿用来了的,难道来个5进制就不行?当然不是,不过

一切以方便优先罢了!2进制是因为方便计算机识别才兴起的,5000年前应该不会有2进制!8进制和16进制又因何2进制有天然联系,所以

也出现了用途,2^3=8、2^4=16(例:这在《数字逻辑》中关于编码方面有相关应用)。

就题论题。再来谈谈1042的万进制。也以一个例子来说明:

107924372*15=1618865580。

①上面的乘法如果运用10进制,很简单。

②万进制呢?

首先存数:a[0]=4372,a[1]=792,a[2]=1。107924372,从低位到高位每四位存到一个数组元素中。此时,总位数为3。

接着运算:a[0]*15=65580,所以进位为a[0]/10000=6,a[0]=a[0]%10000=5580。a[1]*15=11880,a[1]=a[1]+6=11886。

进位为1,a[1]=1886。a[2]*15=15,a[2]=a[2]+1=16,进位为0。

输出:a[2],a[1],a[0]即为1618865580。要注意的是:如果a[2]=886,那么该如何输出?直接输出:168865580。显然不对,

正确的是16088655880。输出的原则是:最高位原样输出,其它位如果小于1000,则高位补0,一位一补。

总之,高精度计算阶乘一般用万进制。

#include<iostream>

#include<iomanip>

using namespace std;

void fac(int n)

{

int a[];

int carry=,place=,i,j;

a[]=;

for(i=;i<=n;i++)

{

carry=;

for(j=;j<=place;j++)

{

a[j]=a[j]*i+carry;

carry=a[j]/;

a[j]%=;

}

if(carry>)

{

place++;

a[place]=carry;

}

}

cout<<a[place];

for(i=place-;i>=;i--)

cout<<setw()<<setfill('')<<a[i];

}

int main()

{

int n;

while(cin>>n)

{

fac(n);

cout<<endl;

}

return ;

}

(大数 万进制) N! hdu1042的更多相关文章

  1. hdu-1042(大数+万进制)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1042 参考文章:https://blog.csdn.net/tigerisland45/article ...

  2. HDU1042 N!(大数问题,万进制)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1042 N! Time Limit: 10000/5000 MS (Java/Others)    M ...

  3. bzoj 1005: [HNOI2008]明明的烦恼 树的prufer序列+万进制

    题目传送门 思路: 这道题需要前置知识prufer编码,这篇博客对prufer编码和这道题的分析写的很好. 这里主要讲一些对大数阶乘的分解,一个办法当然是用高精度,上面这篇博客用的是java,还有一个 ...

  4. 【hdoj_1715】大菲波数(大数+100000000进制)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1715 本题采用大数加法即可解决.采用100000000进制速度更快. C++代码如下: #include& ...

  5. HDU5050:Divided Land(大数的进制转化与GCD)

    题意:给定大数A和B,求gcd.所有数字都是二进制. 思路:先输入字符串,再转化为大数,然后用大数的gcd函数,最后转化为字符串输出. 利用字符串和大数转化的时候可以声明进制,就很舒服的完成了进制转化 ...

  6. Java 大数任意进制转换

    import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner cin = ...

  7. HDU_1042——阶乘,万进制

    #include <cstdio> ; const int BASE = MAX; int main() { int n, i, j; while(~scanf("%d" ...

  8. poj 2635 千进制

    转自:http://www.cnblogs.com/kuangbin/archive/2012/04/01/2429463.html 大致题意: 给定一个大数K,K是两个大素数的乘积的值. 再给定一个 ...

  9. poj 2305(指定进制,大数取模)

    题意:输入一个进制b,在输入两个基于b进制的大整数 x,y ,求x%y的b进制结果. http://162.105.81.212/JudgeOnline/problem?id=2305 函数: Str ...

随机推荐

  1. 第七周 linux如何装载和启动一个可执行文件

    潘恒 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.实验内容 1.预处理. ...

  2. Linux内核分析第六周总结

    进程控制块PCB--task_struct 操作系统的内核里的三大功能: 进程管理 内存管理 文件系统 进程描述符--task_struct 进程管理是最核心的内容 然而Linux进程的状态与操作系统 ...

  3. Golang 函数

    创建函数 package main import "fmt" //有参数,有返回值 func demo(a int, s string) (int, string) { retur ...

  4. 配置wbepack

    proxyTable:{ //反向代理 先建立连接 '/sexLady':{ target:url//请求地址 暗号:'/sexLady ' changeOrigin:true ,//类似baseUr ...

  5. Oracle 使用PDB 的情况下进行备份恢复的使用.

    1. 关于directory: pdb 需要在container 上面创建directory才可以使用 CDB里面创建的directory是会无反应. 在PDB 里面创建: cmd 之后运行 set ...

  6. Babel安装在本地并用webstrom由ES6转Es5

    1进入到根目录 2安装babel npm install babel-cli --save-dev 3安装其他库 npm install --save-dev  babel-preset-env 4创 ...

  7. 第七周PSP 新折线图和饼图 个人时间管理

    1.PSP DATE START-TIME END-TIME EVENT           DELTA TYPE 4.18 15.36 16.10 读构建执法 走神5min         29mi ...

  8. Java之"instanceof"和"isInstance"代码举例

    源码: /** * @Date:2018-04-20 * @Description:判断Instance * - instanceof方法返回一个boolean类型的值,意在告诉我们对象是不是某个特定 ...

  9. C/S架构引用Lodop 如何在C#调用web打印控件Lodop

    lodop是web打印控件,引用安装目录下的ocx文件,可以在c/s架构中使用. 该文件所在路径:C:\Program Files (x86)\MountTaiSoftware\Lodop 有32位和 ...

  10. linux 环境下 firefox乱码问题解决

    https://blog.csdn.net/wlwlwlwl015/article/details/51482065