题目大意:维护一个 N 个数组成的序列,支持区间加、区间乘、单点询问。

题解:在每一个块中维护两个标记,即:整块加和的标记和整块乘积的标记。不过由于有两个标记,涉及到计算区间总和的顺序问题。

一个指定块的区间加标记为 \(atag\),区间乘标记为 \(mtag\),区间除去标记的和为 \(sum\)。

第一种方式:\((sum+atag)*mtag\),第二种方式:\(sum*mtag+atag\)。

比如:假设现在区间加标记要增加 \(val\),若采用第一种方式,需要保证 \(atag*mtag=add+val\),显然这需要使得 \(mtag\) 的值改变,因此并不合适。

相反,如果采用第二种方式的话,加法只会改变加法标记,而区间乘法标记改变时,只需将乘法标记同样乘在加法标记上即可,精度符合要求。

综上,可以理解为乘法标记的优先级更高,即:先做乘法运算,后做加法运算。

代码如下

#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+10;
const int mod=10007; inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
} int n,q,tot,pos[maxn];
long long a[maxn];
struct node{
int l,r;
long long mul,add;
}b[1000]; void make_block(){
tot=(int)sqrt(n);
for(int i=1;i<=tot;i++)b[i].l=(i-1)*tot+1,b[i].r=i*tot;
if(b[tot].r<n)++tot,b[tot].l=b[tot-1].r+1,b[tot].r=n;
for(int i=1;i<=tot;i++)
for(int j=b[i].l;j<=b[i].r;j++)
pos[j]=i,b[i].mul=1;
} void read_and_parse(){
n=read(),q=n;
for(int i=1;i<=n;i++)a[i]=read();
make_block();
} void reset(int x){
for(int i=b[x].l;i<=b[x].r;i++)a[i]=(a[i]*b[x].mul+b[x].add)%mod;
b[x].add=0,b[x].mul=1;
} void modify(int opt,int l,int r,int val){
int x=pos[l],y=pos[r];
if(x==y){
reset(x);
for(int i=l;i<=r;i++)opt?a[i]*=val:a[i]+=val,a[i]%=mod;
}else{
for(int i=x+1;i<=y-1;i++){
if(opt==0)b[i].add=(b[i].add+val)%mod;
else b[i].add=(b[i].add*val)%mod,b[i].mul=(b[i].mul*val)%mod;
}
reset(x),reset(y);
for(int i=l;i<=b[x].r;i++)opt?a[i]*=val:a[i]+=val,a[i]%=mod;
for(int i=b[y].l;i<=r;i++)opt?a[i]*=val:a[i]+=val,a[i]%=mod;
}
} void solve(){
int opt,l,r,val;
while(q--){
opt=read(),l=read(),r=read(),val=read();
if(opt==0)modify(opt,l,r,val);
else if(opt==1)modify(opt,l,r,val);
else printf("%lld\n",(a[r]*b[pos[r]].mul+b[pos[r]].add)%mod);
}
} int main(){
read_and_parse();
solve();
return 0;
}

【LOJ#6283】数列分块7的更多相关文章

  1. LOJ #6283. 数列分块入门 7-分块(区间乘法、区间加法、单点查询)

    #6283. 数列分块入门 7 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2   题目描述 给出 ...

  2. LOJ#6283. 数列分块入门 7

    对于每个区间先乘在加,如果我修改的是部分的块,我就需要把现这个块的add和mul标记全部放下去,然后再更新. #include<map> #include<set> #incl ...

  3. LOJ——#6277. 数列分块入门 1

    ~~推荐播客~~ 「分块」数列分块入门1 – 9 by hzwer 浅谈基础根号算法——分块 博主蒟蒻,有缘人可直接观摩以上大佬的博客... #6277. 数列分块入门 1 题目大意: 给出一个长为 ...

  4. LOJ 6277-6280 数列分块入门 1-4

    数列分块是莫队分块的前置技能,练习一下 1.loj6277 给出一个长为n的数列,以及n个操作,操作涉及区间加法,单点查值. 直接分块+tag即可 #include <bits/stdc++.h ...

  5. LOJ #6285. 数列分块入门 9-分块(查询区间的最小众数)

    #6285. 数列分块入门 9 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2   题目描述 给 ...

  6. LOJ #6284. 数列分块入门 8-分块(区间查询等于一个数c的元素,并将这个区间的所有元素改为c)

    #6284. 数列分块入门 8 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2   题目描述 给出 ...

  7. LOJ #6282. 数列分块入门 6-分块(单点插入、单点查询、数据随机生成)

    #6282. 数列分块入门 6 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 1   题目描述 给出 ...

  8. LOJ #6281. 数列分块入门 5-分块(区间开方、区间求和)

    #6281. 数列分块入门 5 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 5   题目描述 给出 ...

  9. LOJ #6280. 数列分块入门 4-分块(区间加法、区间求和)

    #6280. 数列分块入门 4 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论   题目描述 给出一个 ...

  10. LOJ #6279. 数列分块入门 3-分块(区间加法、查询区间内小于某个值x的前驱(比其小的最大元素))

    #6279. 数列分块入门 3 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 3   题目描述 给 ...

随机推荐

  1. Linux 小记 — Ubuntu 自动化配置

    前言 工欲善其事,必先利其器.经过多次的重复配置 ubuntu 开发坏境,我终于决定花点时间总结一下,并将其写成一个自动化配置脚本.服务器实例:ubuntu 16.04,技术栈:shell,pytho ...

  2. 当给DataGrid的Itemssoure属性赋值引起TabControl_SelectionChanged事件

    在TabControl的TabItem下布局了DataGrid控件时,当给dg.ItemsSource 赋值时会触发父控件的TabControl_SelectionChanged事件; 类似问题原因可 ...

  3. Salesforce随笔: 将Visualforce Page导出为 Excel/CSV/txt (Display a page in Excel)

    想要实现如题所述功能,可以参照 : Visualforce Developer Guide 第57页中所举的例子,在<apex:page>标签中添加contentType属性. <a ...

  4. xmlSpy套件(Altova MissionKit 2016)的Ollydbg调试过程及破解

    最近工作需要用到XML处理软件,网上找到Altova MissionKit 2016( 包含了XmlSpy.MapForce.StyleVision.UModel.DatabaseSpy等工具),用了 ...

  5. Individual Project - Word_frequency

    0x00 预先准备和时间规划 1.因为要用到visual studio 2013,准备学习C#,预计一天时间能基本使用. 3.了解需求并设计基本数据结构与大致流程 20min 2.根据提议实现simp ...

  6. Scrum Meeting day 4

                第四次会议 No_00:工作情况 No_01:任务说明 待完成 已完成 No_10:燃尽图 No_11:照片记录 待更新 No_100:代码/文档签入记录 No_101:出席表 ...

  7. Timer定时执行

    //定时器 public void timeTask(String hh,int n) {//hh="8:30:00",n=12 Timer timer = new Timer() ...

  8. [福大软工] Z班 评测作业对应表

    学号 测试组号 011500908 8 031501102 3 031501118 8 031502106 6 031502109 9 031502113 3 031502142 2 03150220 ...

  9. 测试 多线程 实现 callable 带返回值

    package threadTest; import java.util.ArrayList; import java.util.Date; import java.util.concurrent.C ...

  10. 智能制造(MES)四大阶段

    智能制造的发展会经历标准化.自动化.信息化.智能化四个阶段标准化,对于生产流程.业务流程.生产制造多方面的标准化.质量检测标准化.企业管理.供应链等.标准化是组织现代化生产的重要组成部分,对于生产专业 ...