引言

Kafka中的Message是以topic为基本单位组织的,不同的topic之间是相互独立的。每个topic又可以分成几个不同的partition(每个topic有几个partition是在创建topic时指定的),每个partition存储一部分Message。借用官方的一张图,可以直观地看到topic和partition的关系。 

partition是以文件的形式存储在文件系统中,比如,创建了一个名为page_visits的topic,其有5个partition,那么在Kafka的数据目录中(由配置文件中的log.dirs指定的)中就有这样5个目录: page_visits-0, page_visits-1,page_visits-2,page_visits-3,page_visits-4,其命名规则为<topic_name>-<partition_id>,里面存储的分别就是这5个partition的数据。

接下来,本文将分析partition目录中的文件的存储格式和相关的代码所在的位置。

 

Partition的数据文件

Partition中的每条Message由offset来表示它在这个partition中的偏移量,这个offset不是该Message在partition数据文件中的实际存储位置,而是逻辑上一个值,它唯一确定了partition中的一条Message。因此,可以认为offset是partition中Message的id。partition中的每条Message包含了以下三个属性:

  • offset
  • MessageSize
  • data

其中offset为long型,MessageSize为int32,表示data有多大,data为message的具体内容。它的格式和Kafka通讯协议中介绍的MessageSet格式是一致。

Partition的数据文件则包含了若干条上述格式的Message,按offset由小到大排列在一起。它的实现类为FileMessageSet,类图如下: 
 
它的主要方法如下:

  • append: 把给定的ByteBufferMessageSet中的Message写入到这个数据文件中。
  • searchFor: 从指定的startingPosition开始搜索找到第一个Message其offset是大于或者等于指定的offset,并返回其在文件中的位置Position。它的实现方式是从startingPosition开始读取12个字节,分别是当前MessageSet的offset和size。如果当前offset小于指定的offset,那么将position向后移动LogOverHead+MessageSize(其中LogOverHead为offset+messagesize,为12个字节)。
  • read:准确名字应该是slice,它截取其中一部分返回一个新的FileMessageSet。它不保证截取的位置数据的完整性。
  • sizeInBytes: 表示这个FileMessageSet占有了多少字节的空间。
  • truncateTo: 把这个文件截断,这个方法不保证截断位置的Message的完整性。
  • readInto: 从指定的相对位置开始把文件的内容读取到对应的ByteBuffer中。

我们来思考一下,如果一个partition只有一个数据文件会怎么样? 
1. 新数据是添加在文件末尾(调用FileMessageSet的append方法),不论文件数据文件有多大,这个操作永远都是O(1)的。 
2. 查找某个offset的Message(调用FileMessageSet的searchFor方法)是顺序查找的。因此,如果数据文件很大的话,查找的效率就低。

那Kafka是如何解决查找效率的的问题呢?有两大法宝:1) 分段 2) 索引。

 

数据文件的分段

Kafka解决查询效率的手段之一是将数据文件分段,比如有100条Message,它们的offset是从0到99。假设将数据文件分成5段,第一段为0-19,第二段为20-39,以此类推,每段放在一个单独的数据文件里面,数据文件以该段中最小的offset命名。这样在查找指定offset的Message的时候,用二分查找就可以定位到该Message在哪个段中。

 

为数据文件建索引

数据文件分段使得可以在一个较小的数据文件中查找对应offset的Message了,但是这依然需要顺序扫描才能找到对应offset的Message。为了进一步提高查找的效率,Kafka为每个分段后的数据文件建立了索引文件,文件名与数据文件的名字是一样的,只是文件扩展名为.index。 
索引文件中包含若干个索引条目,每个条目表示数据文件中一条Message的索引。索引包含两个部分(均为4个字节的数字),分别为相对offset和position。

  • 相对offset:因为数据文件分段以后,每个数据文件的起始offset不为0,相对offset表示这条Message相对于其所属数据文件中最小的offset的大小。举例,分段后的一个数据文件的offset是从20开始,那么offset为25的Message在index文件中的相对offset就是25-20 = 5。存储相对offset可以减小索引文件占用的空间。
  • position,表示该条Message在数据文件中的绝对位置。只要打开文件并移动文件指针到这个position就可以读取对应的Message了。

index文件中并没有为数据文件中的每条Message建立索引,而是采用了稀疏存储的方式,每隔一定字节的数据建立一条索引。这样避免了索引文件占用过多的空间,从而可以将索引文件保留在内存中。但缺点是没有建立索引的Message也不能一次定位到其在数据文件的位置,从而需要做一次顺序扫描,但是这次顺序扫描的范围就很小了。

在Kafka中,索引文件的实现类为OffsetIndex,它的类图如下: 

主要的方法有:

  • append方法,添加一对offset和position到index文件中,这里的offset将会被转成相对的offset。
  • lookup, 用二分查找的方式去查找小于或等于给定offset的最大的那个offset
 

小结

我们以几张图来总结一下Message是如何在Kafka中存储的,以及如何查找指定offset的Message的。

Message是按照topic来组织,每个topic可以分成多个的partition,比如:有5个partition的名为为page_visits的topic的目录结构为: 

partition是分段的,每个段叫LogSegment,包括了一个数据文件和一个索引文件,下图是某个partition目录下的文件: 
 
可以看到,这个partition有4个LogSegment。

借用博主@lizhitao博客上的一张图来展示是如何查找Message的。 

比如:要查找绝对offset为7的Message: 
1. 首先是用二分查找确定它是在哪个LogSegment中,自然是在第一个Segment中。 
2. 打开这个Segment的index文件,也是用二分查找找到offset小于或者等于指定offset的索引条目中最大的那个offset。自然offset为6的那个索引是我们要找的,通过索引文件我们知道offset为6的Message在数据文件中的位置为9807。 
3. 打开数据文件,从位置为9807的那个地方开始顺序扫描直到找到offset为7的那条Message。

这套机制是建立在offset是有序的。索引文件被映射到内存中,所以查找的速度还是很快的。

一句话,Kafka的Message存储采用了分区(partition),分段(LogSegment)和稀疏索引这几个手段来达到了高效性。

Kafka的Log存储解析的更多相关文章

  1. kafka的log存储解析——topic的分区partition分段segment以及索引等

    转自:http://blog.csdn.net/jewes/article/details/42970799 引言 Kafka中的Message是以topic为基本单位组织的,不同的topic之间是相 ...

  2. Kafka深入理解-2:Kafka的Log存储解析

    摘自http://blog.csdn.net/jewes/article/details/42970799 引言 Kafka中的Message是以topic为基本单位组织的,不同的topic之间是相互 ...

  3. kafka的log存储解析——topic的分区partition分段segment以及索引等(转发)

    原文 https://www.cnblogs.com/dorothychai/p/6181058.html 引言 Kafka中的Message是以topic为基本单位组织的,不同的topic之间是相互 ...

  4. Kafka#4:存储设计 分布式设计 源码分析

    https://sites.google.com/a/mammatustech.com/mammatusmain/kafka-architecture/4-kafka-detailed-archite ...

  5. Kafka文件的存储机制

    Kafka文件的存储机制 同一个topic下有多个不同的partition,每个partition为一个目录,partition命名的规则是topic的名称加上一个序号,序号从0开始. 每一个part ...

  6. Kakfa揭秘 Day4 Kafka中分区深度解析

    Kakfa揭秘 Day4 Kafka中分区深度解析 今天主要谈Kafka中的分区数和consumer中的并行度.从使用Kafka的角度说,这些都是至关重要的. 分区原则 Partition代表一个to ...

  7. Kafka(3)--kafka消息的存储及Partition副本原理

    消息的存储原理: 消息的文件存储机制: 前面我们知道了一个 topic 的多个 partition 在物理磁盘上的保存路径,那么我们再来分析日志的存储方式.通过 [root@localhost ~]# ...

  8. Kafka消息文件存储

    在对消息进行存储和缓存时,Kafka依赖于文件系统.(Page Cache) 线性读取和写入是所有使用模式中最具可预计性的一种方式,因而操作系统采用预读(read-ahead)和后写(write-be ...

  9. linux log日志解析

    linux log日志解析   其实,可以说成是监控系统的记录,系统一举一动基本会记录下来.这样由于信息非常全面很重要,通常只有 root 可以进行视察!通过登录文件(日志文件)可以根据屏幕上面的错误 ...

随机推荐

  1. vue-computed计算属性

    计算属性:用来封装你想对一个属性进行的操作 computed VS mothod实现的效果和定义一个methods中的function相同,但是他们的区别在于:methods的function当触发重 ...

  2. python 数据可视化 -- 读取数据

    从 CSV 文件中读取数据(CSV) import sys import csv # python 内置该模块 支持各种CSV文件 file_name = r"..\ch02_data\ch ...

  3. Subarray Sums Divisible by K LT974

    Given an array A of integers, return the number of (contiguous, non-empty) subarrays that have a sum ...

  4. log4net 写日志

    转载地址:https://www.cnblogs.com/vichin/p/6022612.html   //基本使用 https://www.cnblogs.com/genesis/p/498562 ...

  5. 第二次spring会议

    今天所做之事: 我用C#用DelectText对行数进行了定义,刚开始写代码有点无从下手. 遇到的问题:刚开始用datagridView进行了文本的输入,但是它更适合EXCEL之类的数据计算不符合我们 ...

  6. Django的学习进阶(二)———— name

    一.问题: 在做完第一个demo的时候,由于只是基础学习,所以对于name的使用并不需要很熟练,也不用理解的很深.但是在做音乐网站的时候遇到了关于如何使用name的内容. 由于一个app中会使用到另一 ...

  7. lua的table转为excel表格的方法

    项目中需要用到转表工具,由于没有直接的转表工具,而且嵌套的table(table里面嵌套了多层表格与数组).无奈之下,只好采用折衷的方法,先将table表格转为json数据,再用在线转表工具将json ...

  8. ABP框架系列之二十五:(Embedded-Resource-Files-嵌入式资源文件)

    Introduction ASP.NET Boilerplate provides an easy way of using embedded Razor views (.cshtml files) ...

  9. boost--日期处理

    1.timer 不同于系统函数的timer()一般生成一个定时器,boost中的timer是一个计时器,以秒为单位,最小精度为毫秒,使用需要包含头文件"boost\timer.hpp&quo ...

  10. Unity、C#读取XML

    有如下XML文件: <?xml version="1.0" encoding="UTF-8"?> <DataNode> <prov ...