The Minimum Cycle Mean in a Digraph 《有向图中的最小平均权值回路》 Karp
Karp在1977年的论文,讲述了一种\(O(nm)\)的算法,用来求有向强连通图中最小平均权值回路(具体问题请参照这里)
本人翻译(有删改):
首先任取一个节点 \(s\) ,定义 \(F_k(v)\) 为从 \(s\) 到 \(v\) 恰好经过 \(k\) 条边的最短路(不存在则为 \(\infty\) ), \(\lambda^*\) 表示答案,则
Theorem 1
\[\tag{1}\label{theorem}\lambda^* = \min_{v \in V} \max_{0 \leq k \leq n - 1} \left[\frac{F_n(v)-F_k(v)}{n-k}\right]\]
定理1的证明需要一个引理。
Lemma 2
如果\(\lambda^* = 0\),那么
\[\min_{v \in V} \max_{0 \leq k \leq n - 1} \left[\frac{F_n(v)-F_k(v)}{n-k}\right] = 0\]
Proof. 由于 \(\lambda^* = 0\) , 存在一个零环,但不存在负环。由于没有负环,从 \(s\) 到 \(v\) 一定存在最短路(指取值和最小路径),且路径上边的条数不超过 \(n\) 。令其权值和为 \(\pi(v)\) , 则 \(F_n(v) \geq \pi(v)\) , 且 \(\pi(v) = \min_{0 \leq k \leq n - 1} F_k(v)\) , 所以
\[F_n(v) - \pi(v) = \max_{0 \leq k \leq n - 1} [F_n(v) - F_k(v)]\]
又由\(F_n(v) \geq \pi(v)\),
\[\tag{2}\label{lemma}\max_{0 \leq k \leq n - 1} \left[\frac{F_n(v)-F_k(v)}{n-k}\right] \geq 0\]
\((\ref{lemma})\) 中等号成立当且仅当 \(F_n(v) = \pi(v)\) . 现在我们只需要证明存在这样一个节点就可以完成此引理的证明。由条件可知,图中存在零环。令此零环为 \(C\) ,在环上任选一点 \(x\) , 沿环上的边走若干步后到 \(x\) , 那么 \(s\leadsto x\leadsto y\) 一定是一条 \(s-y\) 最短路(不然的话,有某条路径\(s\leadsto y\)权值和小于这条路径,我们就可以走\(s\leadsto y \leadsto x\),第二部分路径在环上走,容易发现这样是更短的\(s-x\)路径,与最短路不符)。那么,从 \(x\) 出发沿零环走若干步直到 \(s\leadsto x\leadsto y\) 上有\(n\)条边时,就有 \(F_n(y) = \pi(y)\) , 即\[\max_{0 \leq k \leq n - 1} \left[\frac{F_n(v)-F_k(v)}{n-k}\right] = 0\]. 证毕。
Proof of Theorem 1. 我们现在讨论将图中所有边权都增加 \(c\) 之后定理1中的两边会怎么变化。 \(\lambda^*\) 增加\(c\) , 因为所有环的平均权值都增加了 \(c\) . \(F_k(v)\) 会增加 \(kc\) ,
\[\min_{v \in V} \max_{0 \leq k \leq n - 1} \left[\frac{F_n(v)-F_k(v)}{n-k}\right]\]
也会增加 \(c\) . 所以定理1等号两边都增加了相同的量,仍然成立。据此,若给定任意一个图,我们将它的所有的边都同时减去某个数\(c\)(有可能小于0),使得存在零环而无负环,这时定理成立;我们再把每条边都加上\(c\),就可以得知原图中定理成立。 证毕。
我们可以通过下述递推式求出所有 \(F_k(v)\) :
\[F_k(v) = \min_{(u, v) \in E} \left[F_{k - 1}(u) + w(u, v)\right],\,k=1,2,...,n\]
其初始条件
\[F_0(s)=0; F_0(v)=\infty,v\neq s\]
由于每条边会被松弛 \(O(n)\) 次,最后求出 \(\lambda^*\) 的值需要 \(O(n^2)\) , 总时间复杂度为 \(O(nm)\) .
原论文中要求图强连通,实际上不必如此(以下原创)。
容易发现,如果图不强连通,只有两个地方可能会出问题:第一,可能有些环从\(s\)无法达到,从而无法参与计算;第二,\(F_n(v)\)有可能是正无穷(而强连通图一定不是)。
那么,我们新建一个点(注意,实现时可能不显式写出这个点,但式子里的\(n\)必须要算到\(n+1\),或者强行把所有\(F\)的下标都减一也可以),从它到每个点连一条权值任意(比如都为0)的边,容易知道答案不变。以新的节点作为\(s\),漏洞一就被填补了。
对于第二个漏洞:计算 \(\lambda^*\) 时,由于我们从 \(s\) 向每个点连了一条边,若 \(F_n(v) = \infty\) , 其一定不在任何一个环上(不然显然我可以在这个环上走几圈然后肯定能到这个点),直接忽略。
所以,对于任意有向图\(G\),添加\(s\)点之后,
\[\lambda^*=\min_{v \in V,F_n(v)\neq \infty} \max_{0 \leq k \leq n - 1} \left[\frac{F_n(v)-F_k(v)}{n-k}\right]\qquad\]
The Minimum Cycle Mean in a Digraph 《有向图中的最小平均权值回路》 Karp的更多相关文章
- UVA 11090 Going in Cycle!! 环平均权值(bellman-ford,spfa,二分)
题意: 给定一个n个点m条边的带权有向图,求平均权值最小的回路的平均权值? 思路: 首先,图中得有环的存在才有解,其次再解决这个最小平均权值为多少.一般这种就是二分猜平均权值了,因为环在哪也难以找出来 ...
- Tree Operations 打印出有向图中的环
题目: You are given a binary tree with unique integer values on each node. However, the child pointers ...
- hdu3342-判断有向图中是否存在(至少)3元环或回路-拓扑排序
一:题目大意: 给你一个关系图,判断是否合法, 每个人都有师父和徒弟,可以有很多个: 不合法: 1) . 互为师徒:(有回路) 2) .你的师父是你徒弟的徒弟,或者说你的徒弟是你师父的 ...
- [LeetCode] Second Minimum Node In a Binary Tree 二叉树中第二小的结点
Given a non-empty special binary tree consisting of nodes with the non-negative value, where each no ...
- [LeetCode] Minimum Absolute Difference in BST 二叉搜索树的最小绝对差
Given a binary search tree with non-negative values, find the minimum absolute difference between va ...
- Expm 10_1 带负权值边的有向图中的最短路径问题
[问题描述] 对于一个带负权值边的有向图,实现Bellman-Ford算法,求出从指定顶点s到其余顶点的最短路径,并判断图中是否存在负环. package org.xiu68.exp.exp10; p ...
- tarjan算法-解决有向图中求强连通分量的利器
小引 看到这个名词-tarjan,大家首先想到的肯定是又是一个以外国人名字命名的算法.说实话真的是很佩服那些算法大牛们,佩服得简直是五体投地啊.今天就遇到一道与求解有向图中强连通分量的问题,我的思路就 ...
- 【2018 ICPC亚洲区域赛徐州站 A】Rikka with Minimum Spanning Trees(求最小生成树个数与总权值的乘积)
Hello everyone! I am your old friend Rikka. Welcome to Xuzhou. This is the first problem, which is a ...
- 非负权值有向图上的单源最短路径算法之Dijkstra算法
问题的提法是:给定一个没有负权值的有向图和其中一个点src作为源点(source),求从点src到其余个点的最短路径及路径长度.求解该问题的算法一般为Dijkstra算法. 假设图顶点个数为n,则针对 ...
随机推荐
- JDBC的使用和SQL注入问题
基本的JDBC使用: package demo; import java.sql.Connection; import java.sql.DriverManager; import java.sql. ...
- Pycharm 连接Linux 远程开发
Pycharm 连接Linux 远程开发 在Liunx上安装python3.6(Ubuntu16) 下载Python-3.6.4.tgz 解压 tar -xzvf Python-3.6.4.tgz 进 ...
- HTTPS 怎样保证数据传输的安全性
大家都知道,在客户端与服务器数据传输的过程中,HTTP协议的传输是不安全的,也就是一般情况下HTTP是明文传输的.但HTTPS协议的数据传输是安全的,也就是说HTTPS数据的传输是经过加密的. 在客户 ...
- vue脚手架构
我们是用Eclipse开发的,所以用vue开始时,要进行代理,不然访问不到服务器,所以就需要配置一下 dev context 里面写的是代理的接口,就是以这些接口开头的,如果没有就往里写一下,pro ...
- html 可编辑的下拉框
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- python 打包exe
下载及安装:pip install pyinstaller 执行命令: pyinstaller -F xxx.py pyinstaller --onefile meng.py 可以运行的exe文件位于 ...
- 理解Array.prototype.fill和Array.from
之所以将这两个方法放在一起说,是因为经常写这样的代码: Array.from({length: 5}).fill(0),看起来很简洁,但是踩到坑之后才发现自己对这两个方法实在是不求甚解. Array. ...
- Cordova安装、设置代理和引入插件
cardova代理 $ npm config --global set registry http://registry.cnpmjs.org cardova添加插件 格式:cordova plugi ...
- 「Java基本功」一文读懂Java内部类的用法和原理
内部类初探 一.什么是内部类? 内部类是指在一个外部类的内部再定义一个类.内部类作为外部类的一个成员,并且依附于外部类而存在的.内部类可为静态,可用protected和private修饰(而外部类只能 ...
- 配置IIS的负载均衡
在大型Web应用系统中,由于请求的数据量过大以及并发的因素,导致Web系统会出现宕机的现象,解决这一类问题的方法我个人觉得主要在以下几个方面: 1.IIS 负载均衡. 2.数据库 负载均衡. 3.系统 ...