ServiceLoader主要的功能是用来完成对SPI的provider的加载。

先看下它的成员:

 public final class ServiceLoader<S>
implements Iterable<S> { private static final String PREFIX = "META-INF/services/"; // The class or interface representing the service being loaded
private final Class<S> service; // The class loader used to locate, load, and instantiate providers
private final ClassLoader loader; // The access control context taken when the ServiceLoader is created
private final AccessControlContext acc; // Cached providers, in instantiation order
private LinkedHashMap<String,S> providers = new LinkedHashMap<>(); // The current lazy-lookup iterator
private LazyIterator lookupIterator; ...... }

可以看到他首先是实现了Iterable接口,可以迭代。
PREFIX:指明了路径是在"META-INF/services/"下。
service:表示正在加载的服务的类或接口。
loader:使用的类加载器。
acc:创建ServiceLoader时获取的访问控制上下文。
providers :缓存的服务提供集合。
lookupIterator:是其内部使用的迭代器,用于类的懒加载,只有在迭代时加载。

其构造方法是一个private方法,不对外提供,在使用时我们需要调用其静态的load方法,由其自身产生ServiceLoader对象:

 public static <S> ServiceLoader<S> load(Class<S> service) {
ClassLoader cl = Thread.currentThread().getContextClassLoader();
return ServiceLoader.load(service, cl);
} public static <S> ServiceLoader<S> load(Class<S> service,
ClassLoader loader) {
return new ServiceLoader<>(service, loader);
}

可以看到对load方法进行了重载,其中参数service是要加载的类;单参方法没有类加载器,使用的是当前线程的类加载器;最后调用的是双参的load方法;而双参的load方法也很简单,只是直接调用ServiceLoader的构造方法,实例化了一个对象。

 private ServiceLoader(Class<S> svc, ClassLoader cl) {
service = Objects.requireNonNull(svc, "Service interface cannot be null");
loader = (cl == null) ? ClassLoader.getSystemClassLoader() : cl;
acc = (System.getSecurityManager() != null) ? AccessController.getContext() : null;
reload();
}

可以看到其构造方法逻辑依旧很简单,首先是判断传入的svc(即传入的service)是否为空,若是为空直接报异常,否则给service 成员赋值:

 public static <T> T requireNonNull(T obj, String message) {
if (obj == null)
throw new NullPointerException(message);
return obj;
}

然后给进行cl的非空判断,给loader 成员赋值;接着给acc 成员赋值,其根据是否设置了安全管理器SecurityManager来赋值;最后调用reload方法。

 public void reload() {
providers.clear();
lookupIterator = new LazyIterator(service, loader);
}

可以看到reload方法是一个public方法,那么在每次调用reload时就需要将之前加载的清空掉,所以直接使用providers这个map的clear方法清空掉缓存;接着使用刚才赋值后的service和loader产生一个LazyIterator对象赋值给lookupIterator成员。

LazyIterator是ServiceLoader的内部类,其定义如下:

 private class LazyIterator
implements Iterator<S> {
Class<S> service;
ClassLoader loader;
Enumeration<URL> configs = null;
Iterator<String> pending = null;
String nextName = null; private LazyIterator(Class<S> service, ClassLoader loader) {
this.service = service;
this.loader = loader;
}
......
}

这里就可以看到ServiceLoader的实际加载过程就交给了LazyIterator来做,将ServiceLoader的service和loader成员分别赋值给了LazyIterator的service和loader成员。
configs是服务的URL枚举;
pending是保存要加载的服务的名称集合;
nextName是下一个要加载的服务名称;

ServiceLoader实现了Iterable接口,其实现的iterator方法如下:

 public Iterator<S> iterator() {
return new Iterator<S>() {
Iterator<Map.Entry<String,S>> knownProviders
= providers.entrySet().iterator(); public boolean hasNext() {
if (knownProviders.hasNext())
return true;
return lookupIterator.hasNext();
} public S next() {
if (knownProviders.hasNext())
return knownProviders.next().getValue();
return lookupIterator.next();
} public void remove() {
throw new UnsupportedOperationException();
} };
}

可以看到它是直接创建了一个Iterator对象返回;其knownProviders成员直接获取providers的entrySet集合的迭代器;在hasNext和next方法中我们可以看到,它是先通过判断knownProviders里有没有(即providers),若没有再去lookupIterator中找;
前面我们可以看到providers里并没用put任何东西,那么就说明put操作也是在lookupIterator中完成的。

先看到lookupIterator的next方法:

 public S next() {
if (acc == null) {
return nextService();
} else {
PrivilegedAction<S> action = new PrivilegedAction<S>() {
public S run() { return nextService(); }
};
return AccessController.doPrivileged(action, acc);
}
}

首先根据判断acc是否为空,若为空则说明没有设置安全策略直接调用nextService方法,否则以特权方式调用nextService方法。

 private S nextService() {
if (!hasNextService())
throw new NoSuchElementException();
String cn = nextName;
nextName = null;
Class<?> c = null;
try {
c = Class.forName(cn, false, loader);
} catch (ClassNotFoundException x) {
fail(service,
"Provider " + cn + " not found");
}
if (!service.isAssignableFrom(c)) {
fail(service,
"Provider " + cn + " not a subtype");
}
try {
S p = service.cast(c.newInstance());
providers.put(cn, p);
return p;
} catch (Throwable x) {
fail(service,
"Provider " + cn + " could not be instantiated",
x);
}
throw new Error(); // This cannot happen
}

首先根据hasNextService方法判断,若为false直接抛出NoSuchElementException异常,否则继续执行。

hasNextService方法:

 private boolean hasNextService() {
if (nextName != null) {
return true;
}
if (configs == null) {
try {
String fullName = PREFIX + service.getName();
if (loader == null)
configs = ClassLoader.getSystemResources(fullName);
else
configs = loader.getResources(fullName);
} catch (IOException x) {
fail(service, "Error locating configuration files", x);
}
}
while ((pending == null) || !pending.hasNext()) {
if (!configs.hasMoreElements()) {
return false;
}
pending = parse(service, configs.nextElement());
}
nextName = pending.next();
return true;
}

hasNextService方法首先根据nextName成员是否为空判断,若不为空,则说明已经初始化过了,直接返回true,否则继续执行。接着configs成员是否为空,configs 是一个URL的枚举,若是configs 没有初始化,就需要对configs初始化。
configs初始化逻辑也很简单,首先根据PREFIX前缀加上PREFIX的全名得到完整路径,再根据loader的有无,获取URL的枚举。其中fail方法时ServiceLoader的静态方法,用于异常的处理,后面给出。
在configs初始化完成后,还需要完成pending的初始化或者添加。
可以看到只有当pending为null,或者没有元素时才进行循环。循环时若是configs里没有元素,则直接返回false;否则调用ServiceLoader的parse方法,通过service和URL给pending赋值;

parse方法:

 private Iterator<String> parse(Class<?> service, URL u)
throws ServiceConfigurationError {
InputStream in = null;
BufferedReader r = null;
ArrayList<String> names = new ArrayList<>();
try {
in = u.openStream();
r = new BufferedReader(new InputStreamReader(in, "utf-8"));
int lc = 1;
while ((lc = parseLine(service, u, r, lc, names)) >= 0);
} catch (IOException x) {
fail(service, "Error reading configuration file", x);
} finally {
try {
if (r != null) r.close();
if (in != null) in.close();
} catch (IOException y) {
fail(service, "Error closing configuration file", y);
}
}
return names.iterator();
}

可以看到parse方法直接通过URL打开输入流,通过parseLine一行一行地读取将结果保存在names数组里。

parseLine方法:

 private int parseLine(Class<?> service, URL u, BufferedReader r, int lc,
List<String> names)
throws IOException, ServiceConfigurationError {
String ln = r.readLine();
if (ln == null) {
return -1;
}
int ci = ln.indexOf('#');
if (ci >= 0) ln = ln.substring(0, ci);
ln = ln.trim();
int n = ln.length();
if (n != 0) {
if ((ln.indexOf(' ') >= 0) || (ln.indexOf('\t') >= 0))
fail(service, u, lc, "Illegal configuration-file syntax");
int cp = ln.codePointAt(0);
if (!Character.isJavaIdentifierStart(cp))
fail(service, u, lc, "Illegal provider-class name: " + ln);
for (int i = Character.charCount(cp); i < n; i += Character.charCount(cp)) {
cp = ln.codePointAt(i);
if (!Character.isJavaIdentifierPart(cp) && (cp != '.'))
fail(service, u, lc, "Illegal provider-class name: " + ln);
}
if (!providers.containsKey(ln) && !names.contains(ln))
names.add(ln);
}
return lc + 1;
}

parseLine方法就是读该URL对应地文件地一行,可以看到通过对“#”的位置判断,忽略注释,并且剔除空格,接着是一系列的参数合法检验,然后判断providers和names里是否都没包含这个服务名称,若都没包含names直接add,最后返回下一行的行标;

当parse将所有内容读取完毕,返回names.iterator()赋值给hasNextService中的pending。循环结束,获取pending中的第一个元素赋值给nextName,返回true,hasNextService方法结束。

在nextService方法往下执行时,先用cn保存nextName的值,再让nextName=null,为下一次的遍历做准备;接着通过类加载,加载名为cn的类,再通过该类实例化对象,并用providers缓存起来,最后返回该实例对象。

其中cast方法是判断对象是否合法:

 public T cast(Object obj) {
if (obj != null && !isInstance(obj))
throw new ClassCastException(cannotCastMsg(obj));
return (T) obj;
}

至此ServiceLoader的迭代器的next方法结束。其hasNext方法与其类似,就不详细分析了。

而其remove方法就更直接,直接抛出异常来避免可能出现的危险情况:

 public void remove() {
throw new UnsupportedOperationException();
}

其中使用到的静态fail方法只是抛出异常:

 private static void fail(Class<?> service, String msg, Throwable cause)
throws ServiceConfigurationError {
throw new ServiceConfigurationError(service.getName() + ": " + msg,
cause);
} private static void fail(Class<?> service, String msg)
throws ServiceConfigurationError {
throw new ServiceConfigurationError(service.getName() + ": " + msg);
} private static void fail(Class<?> service, URL u, int line, String msg)
throws ServiceConfigurationError {
fail(service, u + ":" + line + ": " + msg);
}

ServiceLoader除了load的两个方法外还有个loadInstalled方法:

 public static <S> ServiceLoader<S> loadInstalled(Class<S> service) {
ClassLoader cl = ClassLoader.getSystemClassLoader();
ClassLoader prev = null;
while (cl != null) {
prev = cl;
cl = cl.getParent();
}
return ServiceLoader.load(service, prev);
}

该方法与load方法不同在于loadInstalled使用的是扩展类加载器,而load使用的是传入进来的或者是线程的上下文类加载器,其他都一样。

ServiceLoader源码分析到此全部结束。

【Java】ServiceLoader源码分析的更多相关文章

  1. Java Reference 源码分析

    @(Java)[Reference] Java Reference 源码分析 Reference对象封装了其它对象的引用,可以和普通的对象一样操作,在一定的限制条件下,支持和垃圾收集器的交互.即可以使 ...

  2. Java 集合源码分析(一)HashMap

    目录 Java 集合源码分析(一)HashMap 1. 概要 2. JDK 7 的 HashMap 3. JDK 1.8 的 HashMap 4. Hashtable 5. JDK 1.7 的 Con ...

  3. java集合源码分析(三):ArrayList

    概述 在前文:java集合源码分析(二):List与AbstractList 和 java集合源码分析(一):Collection 与 AbstractCollection 中,我们大致了解了从 Co ...

  4. java集合源码分析(六):HashMap

    概述 HashMap 是 Map 接口下一个线程不安全的,基于哈希表的实现类.由于他解决哈希冲突的方式是分离链表法,也就是拉链法,因此他的数据结构是数组+链表,在 JDK8 以后,当哈希冲突严重时,H ...

  5. Java集合源码分析(六)TreeSet<E>

    TreeSet简介 TreeSet 是一个有序的集合,它的作用是提供有序的Set集合.它继承于AbstractSet抽象类,实现了NavigableSet<E>, Cloneable, j ...

  6. Java集合源码分析(五)HashSet<E>

    HashSet简介 HashSet实现Set接口,由哈希表(实际上是一个HashMap实例)支持.它不保证set 的迭代顺序:特别是它不保证该顺序恒久不变.此类允许使用null元素. HashSet源 ...

  7. Java集合源码分析(四)Vector<E>

    Vector<E>简介 Vector也是基于数组实现的,是一个动态数组,其容量能自动增长. Vector是JDK1.0引入了,它的很多实现方法都加入了同步语句,因此是线程安全的(其实也只是 ...

  8. Java集合源码分析(三)LinkedList

    LinkedList简介 LinkedList是基于双向循环链表(从源码中可以很容易看出)实现的,除了可以当做链表来操作外,它还可以当做栈.队列和双端队列来使用. LinkedList同样是非线程安全 ...

  9. Java集合源码分析(二)ArrayList

    ArrayList简介 ArrayList是基于数组实现的,是一个动态数组,其容量能自动增长,类似于C语言中的动态申请内存,动态增长内存. ArrayList不是线程安全的,只能用在单线程环境下,多线 ...

随机推荐

  1. spring boot项目多环境配置文件设置

    具体做法: 不同环境的配置设置一个配置文件,例如:dev环境下的配置配置在application-dev.properties中:prod环境下的配置配置在application-prod.prope ...

  2. Java -- 内部类, 成员内部类,局部内部类,匿名内部类,闭包和回调, 枚举类

    1. 成员内部类分为  静态内部类 和 非静态内部类. 非静态内部类 和 外部类的其他成员一样处理, 非静态内部类可以访问外部类的private的属性,而外部类不能访问非静态内部类的属性,需要实例非静 ...

  3. php发邮件:swiftmailer, php邮件库——swiftmailer

    php发邮件:swiftmailer, php邮件库——swiftmailer 最近看到一个好的php邮件库,与phpmailer作用一样,但性能比phpmailer好,尤其是在处理附件的能力上,发送 ...

  4. (转)Java字符串转日期或日期转字符串

    文章中,用的API是SimpleDateFormat,它是属于java.text.SimpleDateFormat,所以请记得import进 来! 用法: SimpleDateFormat sdf = ...

  5. C++quickSort

    void QuickSort1(int *s,int left,int right){ int i,j,t,pivot; if(left>right) return; if(left<ri ...

  6. POJ1904 King's Quest

    King's Quest Language:Default King's Quest Time Limit: 15000MS Memory Limit: 65536K Total Submission ...

  7. bzoj 2510: 弱题 概率期望dp+循环矩阵

    题目: Description 有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球的概率均为1/M) ...

  8. 从python2,python3编码问题引伸出的通用编码原理解释

    今天使用python2编码时遇到这样一条异常UnicodeDecodeError: ‘ascii’ code can’t decode byte 0xef 发现是编码问题,但是平常在python3中几 ...

  9. 使用Visual Studio进行单元测试-Part5

    本文主要介绍Visual Studio(2012+)单元测试框架的一些技巧: 如何模拟类的静态构造函数 如何测试某方法被调用过 如何测试某方法执行的次数 并行编程测试注意事项 一.如何模拟类的静态构造 ...

  10. android开发 服务器端访问MySQL数据库,并把数据库中的某张表解析成xml格式输出到浏览器

    我们此时只要写一个Servlet就可以了: public class UpdateMenuServlet extends HttpServlet { /** * */ private static f ...