n皇后问题_回溯法
具体问题如下图


先看一下4*4的回溯过程
程序结束条件: 一组解:设标志,找到一解后更改标志,以标志做为结束循环的条件。 所有解:k=0
判断约束函数判断第k个后能不能放在x[k]处 两个皇后不能放在统一斜线上: 若2个皇后放置的位置分别是(i,j)和(k,l), 且 i-j = k -l 或 i+j = k+l,则说明这2个皇后处于同一斜线上。
下面是利用递归和非递归实现的代码
#include<bits/stdc++.h>
using namespace std;
int n;
int x[];
int sum=; /*
判断第k个后能不能放在x[k]处
两个皇后不能放在统一斜线上:
若2个皇后放置的位置分别是(i,j)和(k,l),
且 i-j = k -l 或 i+j = k+l,则说明这2个皇后处于同一斜线上。
*/
void output(){
cout << "第" <<sum << "种放置方法为:" << endl;
for(int i=;i<=n;i++){
cout << "(" <<i << "," << x[i] << ")" << endl;
} }
int place(int k){
for(int j=;j<k;j++){
if(x[j]==x[k] || abs(x[j]-x[k])== abs(j-k))
return ;
}
return ;
}
void BackTrace(int t,int n){//递归
if(t>n){////如果t>n说明已经完成一次放置
sum++;
output();
}
else{
for(int i=;i<=n;i++){
x[t]=i;
if(place(t)){// //可以放在i位置处,则继续搜索
BackTrace(t+,n);
}
} }
} void BackTrace1(int n){//非递归
int k;
x[]=;
k=;
while(k>=){
x[k]+=;////先放在第一个位置
while((x[k]<=n && !(place(k)))){//如果不能放
x[k]++;// //放在下一个位置
}
if(x[k]<=n){
if(k==n){// //如果已经放完了n个皇后
sum++;
output();
}
else{// //没有处理完,让k自加,处理下一个皇后
k++;
x[k]=;
}
}else{// 当前无法完成放置,则进行剪枝,回溯回去,回到第k-1步
k--;
}
}
}
int main()
{
memset(x,,sizeof(x));
cin >> n;
cout << n << "皇后的放置方法为" << endl;
//BackTrace(1,n);
BackTrace1(n);
return ;
}
运行结果如下

皇后个数要大于3才有可行结
n皇后问题_回溯法的更多相关文章
- 实现n皇后问题(回溯法)
/*======================================== 功能:实现n皇后问题,这里实现4皇后问题 算法:回溯法 ============================= ...
- 01背包问题_回溯法&分支限界法
package 分支限界法; import java.util.LinkedList; import java.util.Scanner; /*01背包问题*/ public class ZOPack ...
- JS算法之八皇后问题(回溯法)
八皇后这个经典的算法网上有很多种思路,我学习了之后自己实现了一下,现在大概说说我的思路给大家参考一下,也算记录一下,以免以后自己忘了要重新想一遍. 八皇后问题 八皇后问题,是一个古老而著名的问题,是回 ...
- n皇后问题(回溯法)——Python实现
八皇后问题 问题: 国际象棋棋盘是8 * 8的方格,每个方格里放一个棋子.皇后这种棋子可以攻击同一行或者同一列或者斜线(左上左下右上右下四个方向)上的棋子.在一个棋盘上如果要放八个皇后,使得她们互 ...
- Leetcode之回溯法专题-51. N皇后(N-Queens)
Leetcode之回溯法专题-51. N皇后(N-Queens) n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给 ...
- P1074 靶形数独 dfs回溯法
题目描述 小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他们想用数独来一比高低.但普通的数独对他们来说都过于简单了,于是他们向 Z 博士请教,Z 博士拿出了他最近发明的“靶 ...
- Java算法——回溯法
回溯法一种选优搜索法,又称试探法.利用试探性的方法,在包含问题所有解的解空间树中,将可能的结果搜索一遍,从而获得满足条件的解.搜索过程采用深度遍历策略,并随时判定结点是否满足条件要求,满足要求就继续向 ...
- 回溯法解决N皇后问题(以四皇后为例)
以4皇后为例,其他的N皇后问题以此类推.所谓4皇后问题就是求解如何在4×4的棋盘上无冲突的摆放4个皇后棋子.在国际象棋中,皇后的移动方式为横竖交叉的,因此在任意一个皇后所在位置的水平.竖直.以及45度 ...
- HDU 2553 n皇后问题(回溯法)
DFS Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Description ...
随机推荐
- mvc购物车项目
第一个mvc项目--购物车. 1.购物车需求 a.用户可以登录 b.用户可以购买商品 c.用户可以对购物车的商品进行修改和删除 d.用户可以下订单 e.系统可以发送电子邮件给用户 uml图 2.界面设 ...
- 仿联想商城laravel实战---6、自建配置文件和缓存(如何读取自己创建的配置文件的信息)
仿联想商城laravel实战---6.自建配置文件和缓存(如何读取自己创建的配置文件的信息) 一.总结 一句话总结: config()及相应的方法 1.前端插件选择好了,后端开发超级省力? 比如多图上 ...
- jQuery与javascript库
[jquery-javascript库] 为了简化javascript的开发,诞生了javascript程序库,他封装了很多预定的对象和实用函数.下面是几种流行的javascript程序库:proto ...
- C#中substring ()的用法
C#中substring ()的用法:http://www.cnblogs.com/bluespace/archive/2007/12/11/782336.html
- ROS 负载均衡
[xuan89@MikroTik] > :for i from=1 to=$z do= {/ip firewall mangle add action=mark-connection chain ...
- 《java编程思想》:字符串
1.String对象是不可变的,String类中每个看起来会修改String值的方法,实际上都是创建了一个新的String对象,来包含修改后的内容,所以在对String修改后,想打印新的值,可以直接打 ...
- Agc018_B Sports Festival
传送门 题目大意 有$n$个人,$m$种运动$(n,m\leq 300)$,每个人对$m$种运动有喜爱度的排名. 请你划分一个$m$种运动的非空集合,使得当每个人参加集合内喜爱度排名最高的运动时,最多 ...
- Python 转义字符中没有这个 「\e」 !
问题来源于技术交流群里: 常见的转义字符 \n.\t 之类的我们都知道什么意思,但是这个 \e 是什么意思呢? 抱着一股钻研的精神,我搜了一把. 结果,所有的页面里都是只有一句简单的 \e 代表转义. ...
- 移植memtester到android平台
硬件搭建起来能进入系统,首要就是测试内存的稳定性,需要一款内存测试工具. 一般都是选择memtester这款linux软件,下载地址如下:http://pyropus.ca/software/memt ...
- JavaScript下的进制转换
JavaScript下的进制转换 //十进制转其他进制 var num = 99; console.log('十进制: ', num); console.log('八进制:', (num).toStr ...