n皇后问题_回溯法
具体问题如下图


先看一下4*4的回溯过程
程序结束条件: 一组解:设标志,找到一解后更改标志,以标志做为结束循环的条件。 所有解:k=0
判断约束函数判断第k个后能不能放在x[k]处 两个皇后不能放在统一斜线上: 若2个皇后放置的位置分别是(i,j)和(k,l), 且 i-j = k -l 或 i+j = k+l,则说明这2个皇后处于同一斜线上。
下面是利用递归和非递归实现的代码
#include<bits/stdc++.h>
using namespace std;
int n;
int x[];
int sum=; /*
判断第k个后能不能放在x[k]处
两个皇后不能放在统一斜线上:
若2个皇后放置的位置分别是(i,j)和(k,l),
且 i-j = k -l 或 i+j = k+l,则说明这2个皇后处于同一斜线上。
*/
void output(){
cout << "第" <<sum << "种放置方法为:" << endl;
for(int i=;i<=n;i++){
cout << "(" <<i << "," << x[i] << ")" << endl;
} }
int place(int k){
for(int j=;j<k;j++){
if(x[j]==x[k] || abs(x[j]-x[k])== abs(j-k))
return ;
}
return ;
}
void BackTrace(int t,int n){//递归
if(t>n){////如果t>n说明已经完成一次放置
sum++;
output();
}
else{
for(int i=;i<=n;i++){
x[t]=i;
if(place(t)){// //可以放在i位置处,则继续搜索
BackTrace(t+,n);
}
} }
} void BackTrace1(int n){//非递归
int k;
x[]=;
k=;
while(k>=){
x[k]+=;////先放在第一个位置
while((x[k]<=n && !(place(k)))){//如果不能放
x[k]++;// //放在下一个位置
}
if(x[k]<=n){
if(k==n){// //如果已经放完了n个皇后
sum++;
output();
}
else{// //没有处理完,让k自加,处理下一个皇后
k++;
x[k]=;
}
}else{// 当前无法完成放置,则进行剪枝,回溯回去,回到第k-1步
k--;
}
}
}
int main()
{
memset(x,,sizeof(x));
cin >> n;
cout << n << "皇后的放置方法为" << endl;
//BackTrace(1,n);
BackTrace1(n);
return ;
}
运行结果如下

皇后个数要大于3才有可行结
n皇后问题_回溯法的更多相关文章
- 实现n皇后问题(回溯法)
/*======================================== 功能:实现n皇后问题,这里实现4皇后问题 算法:回溯法 ============================= ...
- 01背包问题_回溯法&分支限界法
package 分支限界法; import java.util.LinkedList; import java.util.Scanner; /*01背包问题*/ public class ZOPack ...
- JS算法之八皇后问题(回溯法)
八皇后这个经典的算法网上有很多种思路,我学习了之后自己实现了一下,现在大概说说我的思路给大家参考一下,也算记录一下,以免以后自己忘了要重新想一遍. 八皇后问题 八皇后问题,是一个古老而著名的问题,是回 ...
- n皇后问题(回溯法)——Python实现
八皇后问题 问题: 国际象棋棋盘是8 * 8的方格,每个方格里放一个棋子.皇后这种棋子可以攻击同一行或者同一列或者斜线(左上左下右上右下四个方向)上的棋子.在一个棋盘上如果要放八个皇后,使得她们互 ...
- Leetcode之回溯法专题-51. N皇后(N-Queens)
Leetcode之回溯法专题-51. N皇后(N-Queens) n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给 ...
- P1074 靶形数独 dfs回溯法
题目描述 小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他们想用数独来一比高低.但普通的数独对他们来说都过于简单了,于是他们向 Z 博士请教,Z 博士拿出了他最近发明的“靶 ...
- Java算法——回溯法
回溯法一种选优搜索法,又称试探法.利用试探性的方法,在包含问题所有解的解空间树中,将可能的结果搜索一遍,从而获得满足条件的解.搜索过程采用深度遍历策略,并随时判定结点是否满足条件要求,满足要求就继续向 ...
- 回溯法解决N皇后问题(以四皇后为例)
以4皇后为例,其他的N皇后问题以此类推.所谓4皇后问题就是求解如何在4×4的棋盘上无冲突的摆放4个皇后棋子.在国际象棋中,皇后的移动方式为横竖交叉的,因此在任意一个皇后所在位置的水平.竖直.以及45度 ...
- HDU 2553 n皇后问题(回溯法)
DFS Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Description ...
随机推荐
- artdialog插件--iframe穿透特性
使用artdialog可以实现嵌套页面间的通信. 一.引入插件 //artdialog是建立在jquery上面的所以要首先引入jquery <script src="__CLASSTP ...
- Mysql5.5 InnoDB存储引擎配置和优化
环境为CentOS系统,1G内存,Mysql5.5.30.在/etc/my.cnf内添加: 复制代码代码如下: skip-external-lockingskip-name-resolvemax_co ...
- Java微信开发_Exception_02_"errcode":40164,"errmsg":"invalid ip 61.172.68.219, not in whitelist hint
ip查询网址: http://www.ip.cn/ 一.异常现象 今天开始做微信开发,在办公室时能正常获取access_token,晚上回家之后获取access_token时却报出下列错误信息: {& ...
- Servlet简单增删改查
前台页面是别人给的. 例子: package cn.itcast.cus.dao; import java.sql.SQLException; import java.util.ArrayList; ...
- 2017-2018-1 20179215《Linux内核原理与分析》第三周作业
本次作业分为两部分:第一部分为实验.主要目的是进行基于MYKERNEL的一个简单的时间片轮转多道程序内核代码分析.第二部分为阅读教材,了解LINUX进程调度等. 一.实验部分 实验过程如过程所述:使用 ...
- Maven(2)-坐标和依赖
本文简要介绍Maven里面的坐标(coodinate)以及maven依赖管理(Dependency) 一.坐标 先来个截图: 在上图peoject栏目有groupId,artifactId,versi ...
- 如何避免这个delete from tb_name不带条件的操作
那么,我们如何避免这个delete from tb_name不带条件的呢?其实是有办法的,但这只针对运维DBA或者DBA在操作时候有用,但对于PHP和JAVA程序,它的连接操作方式,就没办法避免了 s ...
- virtual judge(专题一 简单搜索 C)
Description Farmer John has been informed of the location of a fugitive cow and wants to catch her i ...
- 一:安装Scala
Scala是一种类似Java的纯面向对象的函数式编程语言,由于函数具有明确的确定输入对确定输出的关系,所以适合推理和计算,一切函数都可以看成一系列的计算组成,另外由于Scala函数是没有副作用和透明的 ...
- JWT(JSON WEB TOKEN) / oauth2 / SSL
1: JWT: 为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准((RFC 7519).该token被设计为紧凑且安全的,特别适用于分布式站点的单点登录(SSO)场景.JWT的声明一般被 ...