Query on a tree

You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.

We will ask you to perfrom some instructions of the following form:

  • CHANGE i ti : change the cost of the i-th edge to ti
    or
  • QUERY a b : ask for the maximum edge cost on the path from node a to node b

Input

The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.

For each test case:

  • In the first line there is an integer N (N <= 10000),
  • In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 1000000),
  • The next lines contain instructions "CHANGE i ti" or "QUERY a b",
  • The end of each test case is signified by the string "DONE".

There is one blank line between successive tests.

Output

For each "QUERY" operation, write one integer representing its result.

Example

Input:
1 3
1 2 1
2 3 2
QUERY 1 2
CHANGE 1 3
QUERY 1 2
DONE Output:
1
3
第一次接触树链剖分,貌似是用来处理对树的边权的多次询问,然后对边权进行编号,转化为节点之间的询问。具体关于树链剖分的解析见 http://blog.csdn.net/acdreamers/article/details/10591443
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define lson(x) ((x<<1))
#define rson(x) ((x<<1)+1)
using namespace std;
typedef long long ll;
const int N=1e5+;
const int M=N*N+;
int dep[N],siz[N],fa[N],id[N],son[N],val[N],top[N]; //top 最近的重链父节点
int num;
vector<int> v[N];
struct tree {
int x,y,val;
void read() {
scanf("%d%d%d",&x,&y,&val);
}
};
tree e[N];
void dfs1(int u, int f, int d) {
dep[u] = d;
siz[u] = ;
son[u] = ;
fa[u] = f;
for (int i = ; i < v[u].size(); i++) {
int ff = v[u][i];
if (ff == f) continue;
dfs1(ff, u, d + );
siz[u] += siz[ff];
if (siz[son[u]] < siz[ff])
son[u] = ff;
}
}
void dfs2(int u, int tp) {
top[u] = tp;
id[u] = ++num;
if (son[u]) dfs2(son[u], tp);
for (int i = ; i < v[u].size(); i++) {
int ff = v[u][i];
if (ff == fa[u] || ff == son[u]) continue;
dfs2(ff, ff);
}
} struct Tree {
int l,r,val;
};
Tree tree[*N];
void pushup(int x) {
tree[x].val = max(tree[lson(x)].val, tree[rson(x)].val);
} void build(int l,int r,int v) {
tree[v].l=l;
tree[v].r=r;
if(l==r) {
tree[v].val = val[l];
return ;
}
int mid=(l+r)>>;
build(l,mid,v*);
build(mid+,r,v*+);
pushup(v);
}
void update(int o,int v,int val) { //log(n)
if(tree[o].l==tree[o].r) {
tree[o].val = val;
return ;
}
int mid = (tree[o].l+tree[o].r)/;
if(v<=mid)
update(o*,v,val);
else
update(o*+,v,val);
pushup(o);
}
int query(int x,int l, int r) {
if (tree[x].l >= l && tree[x].r <= r) {
return tree[x].val;
}
int mid = (tree[x].l + tree[x].r) / ;
int ans = ;
if (l <= mid) ans = max(ans, query(lson(x),l,r));
if (r > mid) ans = max(ans, query(rson(x),l,r));
return ans;
} int Yougth(int u, int v) {
int tp1 = top[u], tp2 = top[v];
int ans = ;
while (tp1 != tp2) {
if (dep[tp1] < dep[tp2]) {
swap(tp1, tp2);
swap(u, v);
}
ans = max(query(,id[tp1], id[u]), ans);
u = fa[tp1];
tp1 = top[u];
}
if (u == v) return ans;
if (dep[u] > dep[v]) swap(u, v);
ans = max(query(,id[son[u]], id[v]), ans);
return ans;
}
void Clear(int n) {
for(int i=; i<=n; i++)
v[i].clear();
}
int main() {
int T;
scanf("%d",&T);
while(T--) {
int n;
scanf("%d",&n);
for(int i=; i<n; i++) {
e[i].read();
v[e[i].x].push_back(e[i].y);
v[e[i].y].push_back(e[i].x);
}
num = ;
dfs1(,,);
dfs2(,);
for (int i = ; i < n; i++) {
if (dep[e[i].x] < dep[e[i].y]) swap(e[i].x, e[i].y);
val[id[e[i].x]] = e[i].val;
}
build(,num,);
char s[];
while(~scanf("%s",&s) && s[]!='D') {
int x,y;
scanf("%d%d",&x,&y);
if(s[]=='Q')
printf("%d\n",Yougth(x,y));
if (s[] == 'C')
update(,id[e[x].x],y);
}
Clear(n);
}
return ;
}

spoj 375 Query on a tree (树链剖分)的更多相关文章

  1. SPOJ 375 Query on a tree 树链剖分模板

    第一次写树剖~ #include<iostream> #include<cstring> #include<cstdio> #define L(u) u<&l ...

  2. SPOJ QTREE Query on a tree 树链剖分+线段树

    题目链接:http://www.spoj.com/problems/QTREE/en/ QTREE - Query on a tree #tree You are given a tree (an a ...

  3. spoj QTREE - Query on a tree(树链剖分+线段树单点更新,区间查询)

    传送门:Problem QTREE https://www.cnblogs.com/violet-acmer/p/9711441.html 题解: 树链剖分的模板题,看代码比看文字解析理解来的快~~~ ...

  4. SPOJ QTREE Query on a tree ——树链剖分 线段树

    [题目分析] 垃圾vjudge又挂了. 树链剖分裸题. 垃圾spoj,交了好几次,基本没改动却过了. [代码](自带常数,是别人的2倍左右) #include <cstdio> #incl ...

  5. SPOJ QTREE Query on a tree --树链剖分

    题意:给一棵树,每次更新某条边或者查询u->v路径上的边权最大值. 解法:做过上一题,这题就没太大问题了,以终点的标号作为边的标号,因为dfs只能给点分配位置,而一棵树每条树边的终点只有一个. ...

  6. spoj 375 QTREE - Query on a tree 树链剖分

    题目链接 给一棵树, 每条边有权值, 两种操作, 一种是将一条边的权值改变, 一种是询问u到v路径上最大的边的权值. 树链剖分模板. #include <iostream> #includ ...

  7. SPOJ Query on a tree 树链剖分 水题

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...

  8. Query on a tree——树链剖分整理

    树链剖分整理 树链剖分就是把树拆成一系列链,然后用数据结构对链进行维护. 通常的剖分方法是轻重链剖分,所谓轻重链就是对于节点u的所有子结点v,size[v]最大的v与u的边是重边,其它边是轻边,其中s ...

  9. Bzoj 2588 Spoj 10628. Count on a tree(树链剖分LCA+主席树)

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MB Description 给定一棵N个节点的树,每个点 ...

随机推荐

  1. PHP字符串word末字符大小写互换

    要求 给出一个字符串如 “A journey of, a thousand 'miles' must can't \"begin\" with a single step.” ,通 ...

  2. 什么是 IRC?

    IRC是Internet Relay Chat 的英文缩写,中文一般称为互联网中继聊天.它是由芬兰人Jarkko Oikarinen于1988年首创的一种网络聊天协议.经过十年的发展,目前世界上有超过 ...

  3. webdriver--单选、复选及下拉框的定位

    单选radiobutton的操作 两种情况,一种是各个button元素的属性都有唯一定位值,可以直接用属性唯一值定位:另一种就是一组各方面属性值都一样的radiobutton,除了text,可以用组元 ...

  4. 孤荷凌寒自学python第六十天在windows10上搭建本地Mongodb数据服务

     孤荷凌寒自学python第六十天在windows10上找搭建本地Mongodb数据服务 (完整学习过程屏幕记录视频地址在文末) 今天是学习mongoDB数据库的第六天.成功在本地搭建了windows ...

  5. 带外键Mysql

    带外键的表格的查询 复制代码 //////////////////查询指定表外键约束 select a.name as 约束名, object_name(b.parent_object_id) as ...

  6. android 使用LruCache缓存网络图片

    加载图片,图片如果达到一定的上限,如果没有一种合理的机制对图片进行释放必然会引起程序的崩溃. 为了避免这种情况,我们可以使用Android中LruCache来缓存下载的图片,防止程序出现OOM.   ...

  7. UVALive 5027 二分图 EK

    C - Card Game Crawling in process...Crawling failedTime Limit:3000MS    Memory Limit:0KB    64bit IO ...

  8. BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】

    题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...

  9. POJ -1679(次小生成树)模板

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:34617   Accepted: 12637 D ...

  10. HDU1285 裸的拓扑排序

    拓扑排序: 拓扑排序是应用于有向无回路图(DAG)上的一种排序方式,对一个有向无回路进行拓扑排序后,所有的顶点形成一个序列,对所有边(u,v),满足u在v的前面.该序列说明了顶点表示的事件或 状态发生 ...