题目描述

有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30,每个物品有一个体积(正整数)。

要求n个物品中,任取若干个装入箱内,使箱子的剩余空间为最小。

输入输出格式

输入格式:

一个整数,表示箱子容量

一个整数,表示有n个物品

接下来n行,分别表示这n 个物品的各自体积

输出格式:

一个整数,表示箱子剩余空间。

输入输出样例

输入样例#1:

24

6

8

3

12

7

9

7

输出样例#1:

0

说明

NOIp2001普及组 第4题

这道题看似是搜索,但是可以用背包做。

题目要求求出最小的剩余空间,也就是要求出最大的可装重量

这样,我们可以将一个物体的重量当作它的价值,进而将题目转变为一个基本的01背包问题:

有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数)和一个价值(等于体积)。

要求n个物品中,任取若干个装入箱内,使总价值最大。

对于每一个物体,都有两种状态:装 与不装

那么,对于任意重量m的最大价值 f (m) = max ( f ( m - w[i] ) + w[i], f (m) )(w为重量(即价值))

其中,f ( m - w[i] ) 指在装了物品i后,箱子的剩余容量能装的最大重量

f ( m - w[i] ) + w[i] 指在在装了物品i后,箱子能装的最大重量
#include <iostream>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <vector>
using namespace std;
const int maxn = 1e3+5;
const int N = 20005;
#define ll long long
/*
有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数)和一个价值(等于体积)。 要求n个物品中,任取若干个装入箱内,使总价值最大。
*/
int t, m, n;
int c[N], v[N], dp[N]; int main()
{
while(cin >> m >> n)
{
for(int i=1;i<=n;i++)
cin >> v[i];
memset(dp,0,sizeof(dp));
for(int i=1; i<=n; i++){
for(int j=m; j>=v[i]; j--){
dp[j] = max(dp[j],dp[j-v[i]]+v[i]);
}
}
cout << m-dp[m] << endl; //最小的剩余空间,也就是要求出最大的可装重量
}
}

洛谷 P1049 装箱问题【正难则反/01背包】的更多相关文章

  1. 洛谷 P1049 装箱问题

    \[传送门在这呢!!\] 题目描述 有一个箱子容量为\(V\)(正整数,\(0 \le V \le 20000\)),同时有\(n\)个物品(\(0<n \le 30\),每个物品有一个体积(正 ...

  2. 洛谷 P1049 装箱问题(01背包)

    一道水题,但看到好久没有发博客了,再一看是一道noip普及组t4,就做了. 题目链接 https://www.luogu.org/problemnew/show/P1049 解题思路 一道裸的01背包 ...

  3. 洛谷P1049装箱问题

    一句话刚刚的题会了,这题能不会么. #include<bits/stdc++.h> using namespace std; int main(){ int n,m; cin>> ...

  4. 洛谷P1049 装箱问题

    //01背包 价值等于体积 求所剩最小体积 #include<bits/stdc++.h> using namespace std; ; ; int c,n,v[maxn],f[maxv] ...

  5. 洛谷P1049装箱问题(01背包)

    题目描述 有一个箱子容量为VVV(正整数,0≤V≤200000 \le V \le 200000≤V≤20000),同时有nnn个物品(0<n≤300<n \le 300<n≤30, ...

  6. Java实现 洛谷 P1049 装箱问题

    题目描述 有一个箱子容量为V(正整数0≤V≤20000),同时有n个物品(0<n≤30,每个物品有一个体积(正整数). 要求nn个物品中,任取若干个装入箱内,使箱子的剩余空间为最小. 输入输出格 ...

  7. 洛谷P1926 小书童—刷题大军【01背包】

    题目链接:https://www.luogu.org/problemnew/show/P1926 题目背景 数学是火,点亮物理的灯:物理是灯,照亮化学的路:化学是路,通向生物的坑:生物是坑,埋葬学理的 ...

  8. P1197 [JSOI2008]星球大战(并查集判断连通块+正难则反)

    P1197 [JSOI2008]星球大战(并查集判断连通块+正难则反) 并查集本来就是连一对不同父亲的节点就的话连通块就少一个. 题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统 ...

  9. Codeforces 870F - Path(数论+分类讨论+正难则反)

    Codeforces 题目传送门 & 洛谷题目传送门 首先考虑 \(d(u,v)\) 是个什么东西,分情况讨论: \(u\not\perp v\),\(d(u,v)=1\) \(u\perp ...

随机推荐

  1. 油田(DFS)

    //DFS:油田问题 #include <iostream> using namespace std; ][]; int n,m; //一个网格的8个方向 ][] = {{-,-},{-, ...

  2. python学习总结---面向对象2

    面向对象三大特点 - 封装:既是对数据结构的封装,有是处理数据的方法的封装. - 继承:强调的父子类的关系. - 多态:不同对象调用相同的方法,有不同的响应. 类的继承 - 相关概念 - 继承:父类的 ...

  3. 波动数列 神奇的dp

    问题描述 观察这个数列: 1 3 0 2 -1 1 -2 ... 这个数列中后一项总是比前一项增加2或者减少3. 栋栋对这种数列很好奇,他想知道长度为 n 和为 s 而且后一项总是比前一项增加a或者减 ...

  4. sql的over函数的使用

    over不能单独使用,要和分析函数:rank(),dense_rank(),row_number()等一起使用.其参数:over(partition by columnname1 order by c ...

  5. android配置开发环境

    1.下载Java SE并安装. 下载地址:http://www.oracle.com/technetwork/java/javase/downloads/index.html 配置环境变量 我的电脑- ...

  6. 可以在函数中间打点了,以分析bpf_prog_load函数为例

    可以在函数中间打点了, sudo stap -L 'process("./test").statement("func@test.c:10")' //12.10 ...

  7. PHP实现图片上传并压缩

    本文实例讲解了PHP图片上传并压缩的实现方法,分享给大家供大家参考,具体内容如下 使用到三个文件 connect.php:连接数据库 test_upload.php:执行SQL语句 upload_im ...

  8. Oracle设置用户密码永不过期

    1.查看用户的profile是那个,一般是default: select username, profile from dba_users; 2.查看指定概要文件(如default)的密码有效期设置: ...

  9. 【bzoj4940】[Ynoi2016]这是我自己的发明 DFS序+树上倍增+莫队算法

    题目描述 给一个树,n 个点,有点权,初始根是 1. m 个操作,每次操作: 1. 将树根换为 x. 2. 给出两个点 x,y,从 x 的子树中选每一个点,y 的子树中选每一个点,如果两个点点权相等, ...

  10. 利用VS2013 XSLT对 XML进行转换

    1.打开VS2013 2.文件-->新建-->文件-->XML文件 3.文件-->新建-->文件-->XSLT文件 4.CTRL+SHIFT+S 保存2个文件位置 ...