[题目链接] https://www.luogu.org/problemnew/show/P3172

[题解] https://www.luogu.org/blog/user29936/solution-p3172

1.推式子里面最重要的一个套路:枚举\(di,\)忽略倍数系数的影响.在这道题里面应用于只考虑k的倍数才是有用的.

2.考虑容斥做法,即\(f[i]\)表示答案是\(i\)的倍数的方案数.

3.为避免讨论边界情况,不考虑全选同一个数的情况,即设\(f[i]=x^{n}-x,\)最后再考虑能否全选k的情况.

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
inline int read() {
int res = 0; bool bo = 0; char c;
while (((c = getchar()) < '0' || c > '9') && c != '-');
if (c == '-') bo = 1; else res = c - 48;
while ((c = getchar()) >= '0' && c <= '9')
res = (res << 3) + (res << 1) + (c - 48);
return bo ? ~res + 1 : res;
}
const int N = 1e5 + 5, PYZ = 1e9 + 7;
int n, K, L, H, f[N];
int qpow(int a, int b) {
int res = 1;
while (b) {
if (b & 1) res = 1ll * res * a % PYZ;
a = 1ll * a * a % PYZ;
b >>= 1;
}
return res;
}
int main() {
int i, j; n = read(); K = read(); L = read(); H = read();
if (L % K) L = L / K + 1; else L /= K; H /= K;
if (L > H) return puts("0"), 0;
for (i = 1; i <= H - L; i++) {
int l = L, r = H;
if (l % i) l = l / i + 1; else l /= i; r /= i;
if (l > r) continue;
f[i] = (qpow(r - l + 1, n) - (r - l + 1) + PYZ) % PYZ;
}
for (i = H - L; i; i--) for (j = (i << 1); j <= H - L; j += i)
f[i] = (f[i] - f[j] + PYZ) % PYZ;
if (L == 1) (f[1] += 1) %= PYZ; cout << f[1] << endl;
return 0;
}

P3172 [CQOI2015]选数(莫比乌斯反演)的更多相关文章

  1. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  2. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...

  3. 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛

    题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...

  4. luogu3172 [CQOI2015]选数 莫比乌斯反演+杜教筛

    link 题目大意:有N个数,每个数都在区间[L,H]之间,请求出所有数的gcd恰好为K的方案数 推式子 首先可以把[L,H]之间的数字gcd恰好为K转化为[(L-1)/K+1,H/K]之间数字gcd ...

  5. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛

    求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$   $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...

  6. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  7. BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)

    手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...

  8. [bzoj3930] [洛谷P3172] [CQOI2015] 选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  9. 洛谷P3172 [CQOI2015]选数(容斥)

    传送门 首先,进行如下处理 如果$L$是$K$的倍数,那么让它变成$\frac{L}{K}$,否则变成$\frac{L}{K}+1$ 把$H$变成$\frac{H}{K}$ 那么,现在的问题就变成了在 ...

随机推荐

  1. FFmpeg for Android compiled with x264, libass, fontconfig, freetype and fribidi

    android下打算使用ffmpeg的 drawtext ,不过需要 --enable-libfreetype  但是freetype是个第三方库,所以需要先编译freetype,然后再编译ffmpe ...

  2. 我积累的Java实用代码

    1.解压zip文件 /** * 解压输入的zip流,Java默认的解压只能处理UTF-8编码的文件或者目录名,否则会报MALFORMED异常 * * @param is 输入流 * @param ou ...

  3. 手动编译安装tmux

    tmux的好处就不多说了,总之是多屏管理的神器.通常我们用系统通用的安装方式可以安装到tmux,但有时候,安装到的可能不是我们所需要的版本,又或者软件源里面没有带tmux.这个时候就需要手动编译安装了 ...

  4. 关于stickybroadcast

    stickybroadcast顾名思义,粘性广播,从字面上我们可以联想到service的返回值中也有个一stick,在service中stick作用是当返回了之后服务被杀死,会重启服务. 但是这里的s ...

  5. day35-hibernate映射 03-Hibernate持久态对象自动更新数据库

    持久态对象一个非常重要的能力:自动更新数据库. package cn.itcast.hibernate3.demo1; import static org.junit.Assert.*; import ...

  6. springmvc 注解扫描失败的可能原因

    情况是这样的:web工程采用了ssm框架,dao和service都是通过annotation方式注入的,工程运行正常.后来把service和dao打成jar放在工程的lib目录下,问题来了,配置没改动 ...

  7. ES6中的Set与Map数据结构

    本文实例讲述了ES6学习笔记之Set和Map数据结构.分享给大家供大家参考,具体如下: 一.Set ES6提供了新的数据结构Set.类似于数组,只不过其成员值都是唯一的,没有重复的值. Set本身是一 ...

  8. Opengl创建几何实体——四棱锥和立方体

    //#include <gl\glut.h>#include <GL\glut.h>#include <iostream> using namespace std; ...

  9. 杭电acm 1037题

    本题应该是迄今为止最为简单的一道题,只有一组输入,输出也简单.... /****************************************** 杭电acm 1037题 已AC ***** ...

  10. R: 给 dataframe 的某列赋值、分组、因子化

    ################################################### 问题:给某一列赋值.分组.分类.因子化   18.4.24 如何把 data.frame 中的某 ...