time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You're given an array aa. You should repeat the following operation kk times: find the minimum non-zero element in the array, print it, and then subtract it from all the non-zero elements of the array. If all the elements are 0s, just print 0.

Input

The first line contains integers nn and kk (1≤n,k≤105)(1≤n,k≤105), the length of the array and the number of operations you should perform.

The second line contains nn space-separated integers a1,a2,…,ana1,a2,…,an (1≤ai≤109)(1≤ai≤109), the elements of the array.

Output

Print the minimum non-zero element before each operation in a new line.

Examples

input

Copy

3 5
1 2 3

output

Copy

1
1
1
0
0

input

Copy

4 2
10 3 5 3

output

Copy

3
2

Note

In the first sample:

In the first step: the array is [1,2,3][1,2,3], so the minimum non-zero element is 1.

In the second step: the array is [0,1,2][0,1,2], so the minimum non-zero element is 1.

In the third step: the array is [0,0,1][0,0,1], so the minimum non-zero element is 1.

In the fourth and fifth step: the array is [0,0,0][0,0,0], so we printed 0.

In the second sample:

In the first step: the array is [10,3,5,3][10,3,5,3], so the minimum non-zero element is 3.

In the second step: the array is [7,0,2,0][7,0,2,0], so the minimum non-zero element is 2.

题解:如果直接暴力去找的话必然是会超时的,我们可以利用c++排序的功能排序好,然后进行比较每次输出最小的就大大提高了效率,从而不会是超时

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm> using namespace std; int main()
{ int n,m;
cin>>n>>m;
int a[100005];
for(int t=0;t<n;t++)
{
scanf("%d",&a[t]);
}
sort(a,a+n);
int k=0;
int temp=0;
for(int t=0;t<m;t++)
{
while(k!=n-1&&a[k]==temp)k++;
printf("%d\n",a[k]-temp);
temp=a[k];
}
return 0;
}

Ehab and subtraction(思维题)的更多相关文章

  1. zoj 3778 Talented Chef(思维题)

    题目 题意:一个人可以在一分钟同时进行m道菜的一个步骤,共有n道菜,每道菜各有xi个步骤,求做完的最短时间. 思路:一道很水的思维题, 根本不需要去 考虑模拟过程 以及先做那道菜(比赛的时候就是这么考 ...

  2. cf A. Inna and Pink Pony(思维题)

    题目:http://codeforces.com/contest/374/problem/A 题意:求到达边界的最小步数.. 刚开始以为是 bfs,不过数据10^6太大了,肯定不是... 一个思维题, ...

  3. ZOJ 3829 贪心 思维题

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3829 现场做这道题的时候,感觉是思维题.自己智商不够.不敢搞,想着队友智商 ...

  4. 洛谷P4643 [国家集训队]阿狸和桃子的游戏(思维题+贪心)

    思维题,好题 把每条边的边权平分到这条边的两个顶点上,之后就是个sb贪心了 正确性证明: 如果一条边的两个顶点被一个人选了,一整条边的贡献就凑齐了 如果分别被两个人选了,一作差就抵消了,相当于谁都没有 ...

  5. C. Nice Garland Codeforces Round #535 (Div. 3) 思维题

    C. Nice Garland time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  6. PJ考试可能会用到的数学思维题选讲-自学教程-自学笔记

    PJ考试可能会用到的数学思维题选讲 by Pleiades_Antares 是学弟学妹的讲义--然后一部分题目是我弄的一部分来源于洛谷用户@ 普及组的一些数学思维题,所以可能有点菜咯别怪我 OI中的数 ...

  7. UVA 1394 And Then There Was One / Gym 101415A And Then There Was One / UVAlive 3882 And Then There Was One / POJ 3517 And Then There Was One / Aizu 1275 And Then There Was One (动态规划,思维题)

    UVA 1394 And Then There Was One / Gym 101415A And Then There Was One / UVAlive 3882 And Then There W ...

  8. HDU 1029 Ignatius and the Princess IV / HYSBZ(BZOJ) 2456 mode(思维题,~~排序?~~)

    HDU 1029 Ignatius and the Princess IV (思维题,排序?) Description "OK, you are not too bad, em... But ...

  9. cf796c 树形,思维题

    一开始以为是个树形dp,特地去学了..结果是个思维题 /* 树结构,设最大点权值为Max,则答案必在在区间[Max,Max+2] 证明ans <= Max+2 任取一个点作为根节点,那么去掉这个 ...

随机推荐

  1. 【LeetCode】020. Valid Parentheses

    Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the inpu ...

  2. JUnit手记

    BeforeClass全局只执行一次初始化: Before,每个用例(测试方法)都会走一次: After/AfterClass以此类推

  3. 洛谷【P2005】A/B Problem II

    题目传送门:https://www.luogu.org/problemnew/show/P2005 高精除低精:https://www.cnblogs.com/AKMer/p/9724556.html ...

  4. long long 与__int64使用总结

    本文摘自网络.原文网址:http://blog.sina.com.cn/s/blog_6aa178410100vlwr.html 前言: 在16位环境下,int/unsigned int 占16位,l ...

  5. Poj 2017 Speed Limit(水题)

    一.Description Bill and Ted are taking a road trip. But the odometer in their car is broken, so they ...

  6. 二 vue环境搭建

    一: 新建一个项目文件夹,命名为 vue-demo,cd到此文件夹,输入:vue init webpack vue-demo,回车,按照如下操作进行初始化: 2: 项目结构 3: 安装项目依赖的包   ...

  7. ng2 中的全屏与退出全屏

    1.进入全屏 launchFullscreen(element) { if(element.requestFullscreen) { element.requestFullscreen(); } el ...

  8. shell入门-awk-2

    awk的条件操作符 ///显示第一段有root的行 [root@wangshaojun ~]# awk -F ':' '$1=="root"' 1.txtroot:x:0:0:ro ...

  9. ABCD四个人说真话的概率都是1/3。假如A声称B否认C说D是说谎了,那么D说过的那句话真话的概率是多少

    ABCD四个人说真话的概率都是1/3.假如A声称B否认C说D是说谎了,那么D说过的那句话 真话的概率是多少 记"A声称B否认C说D说谎"为X,那么由贝叶斯公式,所求的 P(D真)P ...

  10. Java探索之旅(9)——数据和方法的可见性

    注意,在UML图中,public-protected-private分别用+,-,#表示. 类中成员修饰符 在同一类访问 在同一包访问 在子类内访问 在不同包可访问 Public √ √ √ √ Pr ...