大学生程序代写

/*  NYOJ69 阶乘数位长度





http://acm.nyist.net/JudgeOnline/problem.php?pid=69





数的长度

时间限制:3000 ms  |  内存限制:65535 KB 

难度:1

描述 

    N!阶乘是一个非常大的数,大家都知道计算公式是N!=N*(N-1)······*2*1.现在你的任务是计算出N!的位数有多少(十进制)?





输入 

首行输入n,表示有多少组测试数据(n<10)

随后n行每行输入一组测试数据 N( 0 < N < 1000000 ) 

输出 

对于每个数N,输出N!的(十进制)位数。 

样例输入 

3

1

3

32000样例输出 

1

1

130271

来源 

ACM教程 

上传者 

rooot

*  方法一:

*可设想n!的结果是不大于10的M次幂的数,即n!<=10^M(10的M次方),则不小于M的最小整数就是 n!的位数,对



 该式两边取对数,有 M =log10^n! 即:M = log10^1+log10^2+log10^3...+log10^n 循环求和,就能算得M值,



该M是n!的精确位数。当n比较大的时候,这种方法方法需要花费很多的时间。





方法二:



 利用斯特林(Stirling)公式的进行求解。下面是推导得到的公式:



  res=(long)( (log10(sqrt(4.0*acos(0.0)*n)) + n*(log10(n)-log10(exp(1.0)))) + 1 );



 当n=1的时候,上面的公式不适用,所以要单独处理n=1的情况!

.

 有关斯特林(Stirling)公式及其相关推导,这里就不进行详细描述,有兴趣的话可看这里。



这种方法速度很快就可以得到结果。详细证明如下:



  http://episte.math.ntu.edu.tw/articles/mm/mm_17_2_05/index.html

14.

*/





//c语言版

#include <stdio.h>

#include <math.h>

int main()

{

int n,cas,i;

double sum;

scanf("%d",&cas);

while (cas--)//n!≈√2πn { (n/e)^n }

{

scanf("%d",&n);

sum=1;

for(i=1;i<=n;i++) 

sum+=log10((double)i);

printf("%d\n",(int)sum);

}

return 0;

}





//C++版





/*

#include<iostream>

#include <cmath>

using namespace std;





int normal(double n){

double x=0;

   while(n){

   x +=log10(n);

    n--;

}

return (int)x+1;

}

 long stirling(double n){

long x=0;

    if( n ==1 )

      x = 1;

   else{  x = (long)( (log10(sqrt(4.0*acos(0.0)*n)) + n*(log10(n)-log10(exp(1.0)))) + 1 );

}

return x;

}

    int main()

{int n;

 cin>>n;//c++中输入一个数

      while(n--){ 

  int x;

        cin>>x;

     cout<<stirling(x)<<endl;//c++中输出一个数

 }

return 0;





}

*/

作者:chao1983210400 发表于2013-7-10 13:19:06 原文链接
阅读:6 评论:0 查看评论

[原]NYOJ-数的位数-69的更多相关文章

  1. java实现:将一个数各个位数相加

    前面已经实现过这个程序,现在我们就不多说了,直接更改C的源码,实现这个JAVA程序. import java.util.Scanner; public class HelloWorld { publi ...

  2. 利用C语言判别输入数的位数并正逆序输出

    利用C语言判别用户输入数的位数并正逆序输出 #include <stdio.h> void main() {        int i, scanfNum, printfNum, temp ...

  3. nyoj 69-数的长度 (log10(),计算数的位数)

    69-数的长度 内存限制:64MB 时间限制:3000ms 特判: No 通过数:10 提交数:13 难度:1 题目描述: N!阶乘是一个非常大的数,大家都知道计算公式是N!=N*(N-1)····· ...

  4. nyoj 96 n-1位数(处理前导 0 的情况)

    n-1位数 时间限制:3000 ms  |            内存限制:65535 KB 难度:1   描述 已知w是一个大于10但不大于1000000的无符号整数,若w是n(n≥2)位的整数,则 ...

  5. nyoj 数的长度

    描述 N!阶乘是一个非常大的数,大家都知道计算公式是N!=N*(N-1)······*2*1.现在你的任务是计算出N!的位数有多少(十进制)?   输入 首行输入n,表示有多少组测试数据(n<1 ...

  6. NYOJ——————数的长度(斯特林公式的应用)

    数的长度 时间限制:3000 ms  |  内存限制:65535 KB 难度:1   描述 N!阶乘是一个非常大的数,大家都知道计算公式是N!=N*(N-1)······*2*1.现在你的任务是计算出 ...

  7. nefu26(求数的位数)

    Description 根据密码学需要,要计算某些数的阶乘的位数. Input 第一行为整数n ,接下来 n 行, 每行1个数m (1 ≤ m ≤ 10^7) . Output 输出m的阶乘的位数. ...

  8. nyoj 96 n-1位数(处理前导 0 的情况)(string)

    n-1位数 时间限制:3000 ms  |            内存限制:65535 KB 难度:1   描述 已知w是一个大于10但不大于1000000的无符号整数,若w是n(n≥2)位的整数,则 ...

  9. HDU 1018 阶乘数的位数

    题目大意: 将一个数开阶乘后得到的值,来求这个值的位数 n! = 1*2*3*4...*n 对于求一个数的位数的方法为ans = lg(n!) + 1 那么就可以看作 ans = lg(1) + lg ...

随机推荐

  1. ios8 一些运行问题

     iOS10相册相机闪退bughttp://www.jianshu.com/p/5085430b029fiOS 10 因苹果健康导致闪退 crashhttp://www.jianshu.com/p/5 ...

  2. 笔试真题解析 ALBB-2015 算法project师实习生机试

    1.用十进制计算30!(30的阶乘),将结果转换成3进制进行表示的话,该进制下的结果末尾会有____个0. [解析] 计算N.下3进制结果末尾有多少个0,事实上就是计算3进制中的3被进位多少次,仅仅要 ...

  3. python 迭代器,生成器与推导式

    函数的动态传参 *args 动态接收所有位置参数 **kwargs 动态接收关键字参数 顺序: 位置参数, *args, 默认参数, **kwargs def func(*args, **kwargs ...

  4. Entity Framework 4.1 : 贪婪加载和延迟加载

    这篇文章将讨论查询结果的加载控制. EF4.1 允许控制对象之间的关系,当我们进行查询的时候,哪些关系的数据将会被加载到内存呢?所有相关的对象都需要吗?在一些场合可能有意义,例如,当查询的实体仅仅拥有 ...

  5. vue前戏ES6

    es6语法 es6语法:let和const: { var a=123; let b=234; } console.log(a); console.log(b); 浏览器里会只看到123; 而且还会抱一 ...

  6. 我的设计模式学习笔记------>Java设计模式总概况

    设计模式(Design Pattern)的概念最早起源于建筑设计大师Alexander的<建筑的永恒方法>一书,尽管Alexander的著作是针对建筑领域的,但是他的观点实际上用用于所有的 ...

  7. HDU 4513 吉哥系列故事――完美队形II(Manacher)

    题目链接:cid=70325#problem/V">[kuangbin带你飞]专题十六 KMP & 扩展KMP & Manacher V - 吉哥系列故事――完美队形I ...

  8. Android JSON And Object Cast

    Ref:JSON字符串转换成Java实体类(POJO) Ref:Java.Json转换方式之二:Jackson Ref:Jackson 框架,轻易转换JSON Ref:几种序列化协议(protobuf ...

  9. [从jQuery看JavaScript]-匿名函数与闭包(Anonymous Function and Closure)

    http://blog.csdn.net/natineprince/article/details/4759533   jQuery片段: (function(){ //这里忽略jQuery所有实现 ...

  10. C#DataSet/DataAdapter

    DataReader必须持续连接,所以在调用方法SqlDataReader作为返回类型时候,必须在方法外关闭流,很不方便. DataAdapter用于对数据源检索数据并填充到DataSet中的表.Da ...