奇异值分解(SVD)和简单图像压缩
SVD(Singular Value Decomposition,奇异值分解)
算法优缺点:
- 优点:简化数据,去除噪声,提高算法结果
- 缺点:数据的转换可能难于理解
- 适用数据类型:数值型数据
算法思想:
很多情况下,数据的一小部分包含了数据的绝大部分信息,线性代数中有很多矩阵的分解技术可以将矩阵表示成新的易于处理的形式,不同的方法使用与不同的情况。最常见的就是SVD,SVD将数据分成三个矩阵U(mm),sigma(mn),VT(nn),这里得到的sigma是一个对角阵,其中对角元素为奇异值,并且它告诉了我们重要的特征。
这里的实现用的也是numpy种的函数linalg.svd()
实例:用SVD进行图像压缩
这里的数据集是前面用于手写识别的一个数据,大小为32*32=1024像素,因为进行svd之后我们的数据变成一堆浮点数,所以输出函数要改进一下,设置一个阀值(这个值的设置会影响显示效果)。可以看出完成压缩之后我们只需要两个奇异值和U、VT两个矩阵,共计64+64+2=130个像素,达到了近十倍压缩比,而且还原出来的图像基本不变

*********orignal matrix**************0000000000000011000000000000000000000000000011111100000000000000000000000001111111100000000000000000000000111111111100000000000000000000111111111111100000000000000000011111111111111100000000000000000011111111111111100000000000000000111111100001111100000000000000011111110000011111000000000000001111110000000011110000000000000011111100000000111110000000000000111111000000000111100000000000001111110000000001111000000000000001111110000000001111000000000000111111100000000011110000000000001111110000000000111100000000000001111100000000001111000000000000111111000000000011110000000000000111110000000000111100000000000001111100000000011111000000000000001111100000000011111000000000000011111000000000111110000000000000111110000000001111100000000000001111100000000111110000000000000011111000000011111100000000000000111111000001111110000000000000000111111111111111100000000000000000111111111111111000000000000000001111111111111110000000000000000001111111111110000000000000000000001111111111000000000000000000000000111111000000000000****reconstructed matrix using 3 singular values******0000000000000000000000000000000000000000000000000000000000000000000000000000101111100000000000000000000000001111111000000000000000000000000111111111000000000000000000000011111111111100000000000000000000111111111111000000000000000000011100000000111000000000000000001111000000001111000000000000000111110000000011110000000000000001111100000000011100000000000000011111000000000111000000000000000111110000000001110000000000000000111100000000001111000000000000001111000000000011110000000000000011110000000000111100000000000000111100000000001111000000000000001111000000000011110000000000000011110000000000111100000000000000111100000000001110000000000000001111000000000011110000000000000011110000000000111100000000000000111100000000001111000000000000001111000000000011110000000000000011110000000000111000000000000000111100000000111100000000000000000011111111111110000000000000000000111111111111000000000000000000001111111111110000000000000000000000111111111100000000000000000000001111111110000000000000000000000000000000000000000000
#coding=utf-8
from numpy import *
def printMat(inMat, thresh=0.8):
for i in range(32):
for j in range(32):
if float(inMat[i,j]) > thresh:
print 1,
else:
print 0,
print ' ' def imgCompress(numSV=3, thresh=0.8):
myl = []
for line in open('0_5.txt').readlines():
newRow = []
for i in range(32):
newRow.append(int(line[i]))
myl.append(newRow)
myMat = mat(myl)
print '*********orignal matrix**************'
printMat(myMat,thresh)
U, sigmal, VT = linalg.svd(myMat)
SigRecon =mat(zeros((numSV,numSV)))
for k in range(numSV):
SigRecon[k,k] = sigmal[k]
reconMat = U[:,:numSV] * SigRecon * VT[:numSV,:]
print "****reconstructed matrix using %d singular values******" % numSV
printMat(reconMat, thresh) def main():
imgCompress() if __name__ == '__main__':
main()
机器学习笔记索引
奇异值分解(SVD)和简单图像压缩的更多相关文章
- [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用
本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...
- 一步步教你轻松学奇异值分解SVD降维算法
一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...
- 数学基础系列(六)----特征值分解和奇异值分解(SVD)
一.介绍 特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景. 奇异值分解是一个有着很明显的物理意义的一种方法,它可 ...
- 转载:奇异值分解(SVD) --- 线性变换几何意义(下)
本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...
- 奇异值分解(SVD) --- 几何意义
原文:http://blog.sciencenet.cn/blog-696950-699432.html PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD ...
- 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维
关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...
- 用 GSL 求解超定方程组及矩阵的奇异值分解(SVD)
用 GSL 求解超定方程组及矩阵的奇异值分解(SVD) 最近在学习高动态图像(HDR)合成的算法,其中需要求解一个超定方程组,因此花了点时间研究了一下如何用 GSL 来解决这个问题. GSL 里是有最 ...
- 奇异值分解(SVD)原理详解及推导(转载)
转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...
- 奇异值分解(SVD) --- 几何意义 (转载)
PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象, ...
- 奇异值分解(SVD)原理详解及推导 (转载)
转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...
随机推荐
- cogs 577 蝗灾 CDQ分治
第一道CDQ,抄了下helenkeller的代码,感觉和归并排序差不多... 因为左半边的修改肯定在右半边的询问之前,所以就不用管时间的限制了,可以直接x轴排序树状数组处理y轴... #include ...
- 【原创】自己动手写工具----签到器[Beta 1.0]
一.写在前面 最近公司没有什么项目,想通过项目练练手的机会也没有,只能自己学习了,因此空下来的时间也挺多的,就打开网页看看吧,哎,一打开就让签到(像什么百度知道啊.百度云盘啊之类的),我签到的目的是获 ...
- PHP -- Perl风格正则表达式
1.正则表达式作为一个匹配的模版,是由原子(普通字符,例如a-z),有特殊功能的字符(元字符,例如*.+ 和?等),以及模式修正符三个部分组成.2.在于Perl兼容的正则表达式函数中使用模式时一定要给 ...
- <<< html图片背景平铺
CSS背景图片平铺技巧 使用CSS来设置背景图片同传统的做法一样简单,但相对于传统控制方式,CSS提供了更多的可控选项,我们先来看看最基本的设置图片的方法.html代码: 代码如下: <divi ...
- 硬盘下安装Ghost系统简易教程
硬盘安装器下载:https://eyun.baidu.com/s/3c2NvcvI 密码:Cv7F 使用本方法可在没有光驱.光盘.启动U盘等任何系统安装设备的情况下安装Ghost版XP.Win7/8/ ...
- 树莓派2系统DietPi简单安装配置使用介绍
DietPi在Raspberrypi.org上的原帖:http://dwz.cn/HSrmY 版本发布很频繁,给原作者们点个赞.功能会越来越多,而且作者的定制观点很明确,适合树莓派的使用. 之前关于D ...
- TCP/IP——链路层
链路层主要有三个目的: (1)为IP模块发送和接收IP数据报; (2)为ARP模块发送 ARP请求和接收 ARP应答; (3)为RARP发送RARP请求和接收RARP应答. TCP / IP支持多种不 ...
- windows 10卸载自带软件
http://jingyan.baidu.com/article/14bd256e4ad268bb6c26126d.html http://jingyan.baidu.com/album/ae97a6 ...
- 脑筋急转弯——Google 面试
1. 村子里有100对夫妻,其中每个丈夫都瞒着自己的妻子偷情...村里的每个妻子都能立即发现除自己丈夫之外的其他男人是否偷情,唯独不知道她自己的丈夫到底有没有偷情.村里的规矩不容忍通奸.任何一个妻子, ...
- 搭建XMPP学习环境
XMPP(Extensible Messaging and Presence Protocol,前称Jabber)是一种以XML为基础的开放式IM协议.xmpp被人熟知,google talk肯定有一 ...