SVD(Singular Value Decomposition,奇异值分解)

算法优缺点:

  • 优点:简化数据,去除噪声,提高算法结果
  • 缺点:数据的转换可能难于理解
  • 适用数据类型:数值型数据

算法思想:

很多情况下,数据的一小部分包含了数据的绝大部分信息,线性代数中有很多矩阵的分解技术可以将矩阵表示成新的易于处理的形式,不同的方法使用与不同的情况。最常见的就是SVD,SVD将数据分成三个矩阵U(mm),sigma(mn),VT(nn),这里得到的sigma是一个对角阵,其中对角元素为奇异值,并且它告诉了我们重要的特征。
这里的实现用的也是numpy种的函数linalg.svd()

实例:用SVD进行图像压缩

这里的数据集是前面用于手写识别的一个数据,大小为32*32=1024像素,因为进行svd之后我们的数据变成一堆浮点数,所以输出函数要改进一下,设置一个阀值(这个值的设置会影响显示效果)。可以看出完成压缩之后我们只需要两个奇异值和U、VT两个矩阵,共计64+64+2=130个像素,达到了近十倍压缩比,而且还原出来的图像基本不变

数据如下:

执行结果:
  1. *********orignal matrix**************
  2. 00000000000000110000000000000000
  3. 00000000000011111100000000000000
  4. 00000000000111111110000000000000
  5. 00000000001111111111000000000000
  6. 00000000111111111111100000000000
  7. 00000001111111111111110000000000
  8. 00000000111111111111111000000000
  9. 00000000111111100001111100000000
  10. 00000001111111000001111100000000
  11. 00000011111100000000111100000000
  12. 00000011111100000000111110000000
  13. 00000011111100000000011110000000
  14. 00000011111100000000011110000000
  15. 00000001111110000000001111000000
  16. 00000011111110000000001111000000
  17. 00000011111100000000001111000000
  18. 00000001111100000000001111000000
  19. 00000011111100000000001111000000
  20. 00000001111100000000001111000000
  21. 00000001111100000000011111000000
  22. 00000000111110000000001111100000
  23. 00000000111110000000001111100000
  24. 00000000111110000000001111100000
  25. 00000000111110000000011111000000
  26. 00000000111110000000111111000000
  27. 00000000111111000001111110000000
  28. 00000000011111111111111110000000
  29. 00000000001111111111111110000000
  30. 00000000001111111111111110000000
  31. 00000000000111111111111000000000
  32. 00000000000011111111110000000000
  33. 00000000000000111111000000000000
  34. ****reconstructed matrix using 3 singular values******
  35. 00000000000000000000000000000000
  36. 00000000000000000000000000000000
  37. 00000000000010111110000000000000
  38. 00000000000011111110000000000000
  39. 00000000000111111111000000000000
  40. 00000000001111111111110000000000
  41. 00000000001111111111110000000000
  42. 00000000011100000000111000000000
  43. 00000000111100000000111100000000
  44. 00000001111100000000111100000000
  45. 00000001111100000000011100000000
  46. 00000001111100000000011100000000
  47. 00000001111100000000011100000000
  48. 00000000111100000000001111000000
  49. 00000000111100000000001111000000
  50. 00000000111100000000001111000000
  51. 00000000111100000000001111000000
  52. 00000000111100000000001111000000
  53. 00000000111100000000001111000000
  54. 00000000111100000000001110000000
  55. 00000000111100000000001111000000
  56. 00000000111100000000001111000000
  57. 00000000111100000000001111000000
  58. 00000000111100000000001111000000
  59. 00000000111100000000001110000000
  60. 00000000111100000000111100000000
  61. 00000000001111111111111000000000
  62. 00000000001111111111110000000000
  63. 00000000001111111111110000000000
  64. 00000000000011111111110000000000
  65. 00000000000011111111100000000000
  66. 00000000000000000000000000000000
 #coding=utf-8
from numpy import *
def printMat(inMat, thresh=0.8):
for i in range(32):
for j in range(32):
if float(inMat[i,j]) > thresh:
print 1,
else:
print 0,
print ' ' def imgCompress(numSV=3, thresh=0.8):
myl = []
for line in open('0_5.txt').readlines():
newRow = []
for i in range(32):
newRow.append(int(line[i]))
myl.append(newRow)
myMat = mat(myl)
print '*********orignal matrix**************'
printMat(myMat,thresh)
U, sigmal, VT = linalg.svd(myMat)
SigRecon =mat(zeros((numSV,numSV)))
for k in range(numSV):
SigRecon[k,k] = sigmal[k]
reconMat = U[:,:numSV] * SigRecon * VT[:numSV,:]
print "****reconstructed matrix using %d singular values******" % numSV
printMat(reconMat, thresh) def main():
imgCompress() if __name__ == '__main__':
main()

机器学习笔记索引

奇异值分解(SVD)和简单图像压缩的更多相关文章

  1. [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用

    本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...

  2. 一步步教你轻松学奇异值分解SVD降维算法

    一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...

  3. 数学基础系列(六)----特征值分解和奇异值分解(SVD)

    一.介绍 特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景. 奇异值分解是一个有着很明显的物理意义的一种方法,它可 ...

  4. 转载:奇异值分解(SVD) --- 线性变换几何意义(下)

    本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...

  5. 奇异值分解(SVD) --- 几何意义

    原文:http://blog.sciencenet.cn/blog-696950-699432.html PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD ...

  6. 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维

    关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...

  7. 用 GSL 求解超定方程组及矩阵的奇异值分解(SVD)

    用 GSL 求解超定方程组及矩阵的奇异值分解(SVD) 最近在学习高动态图像(HDR)合成的算法,其中需要求解一个超定方程组,因此花了点时间研究了一下如何用 GSL 来解决这个问题. GSL 里是有最 ...

  8. 奇异值分解(SVD)原理详解及推导(转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

  9. 奇异值分解(SVD) --- 几何意义 (转载)

    PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象, ...

  10. 奇异值分解(SVD)原理详解及推导 (转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

随机推荐

  1. tomcat设置虚拟目录开启文件下载在服务

    因为平时一直在eclipse里运行tomcat,所以改的文件在eclipse里的server 在server.xml里找到<host></host>,并在</host&g ...

  2. JS Select 月日日期联动

    Js对Select控件进行联动操作,一个select选择月份后另一个select生成对应月份的所有日期. <%@ Page Language="C#" AutoEventWi ...

  3. ps你最容易忽略的知识

    了解更多ps知识 1. 快速打开文件­ 双击Photoshop的背景空白处(默认为灰色显示区域)即可打开选择文件的浏览窗口.­ 2. 随意更换画布颜色­ 选择油漆桶工具并按住Shift点击画布边缘,即 ...

  4. arcgis desktop 10.1 license manager无法启动问题解决

    19:44:36 (ARCGIS) Vendor daemon can't talk to lmgrd (License server machine is down or not respondin ...

  5. 苹果手机IOS中div contenteditable=true 仿文本域无法输入编辑

    问题: 在苹果手机IOS中 contenteditable="true" 做文本域输入,点击可以弹出键盘但是无法输入,安卓都正常. 经测试后,记得加一个样式 -webkit-use ...

  6. Sybase 出错解决步骤

    总结: 1.出错该错误可以先检查一下Sybase BCKServer服务有没有启动 2.在dsedit看能否ping通备份服务 3.检查master库sysservers表的配置 4.如在备份数据库d ...

  7. 2015.5.2-2015.5.8 Tip jQuery ,前端组件库,inline-block元素间距等

    有忙于它事,故延迟了,但在坚持! 1.Tip jQuery   2.给span加display: inline-block; 怎样能对齐? 解决方法:vertical-align: bottom:   ...

  8. mysql安装配置

    MySQL 是最流行的关系型数据库管理系统,由瑞典MySQL AB公司开发,目前属于Oracle公司. MySQL所使用的SQL语言是用于访问数据库的最常用标准化语言. MySQL由于其体积小.速度快 ...

  9. 3、CCS样式表

    一.CCS样式表的分类(优先级从低到高): 1.浏览器默认样式表 2.外部样式表:在外部创建的.ccs文件中.使用外部样式表可以使样式应用于多个网页.通过这个方法只需改动一个文件就能改变整个网站的外观 ...

  10. Windows下图文详解PHP三种运行方式(php_mod、cgi、fastcgi)

    PHP能不能成功的在Apache服务器上运行,就看我们如何去配置PHP的运行方式.PHP运行目前为止主要有三种方式: a.以模块加载的方式运行,初学者可能不容易理解,其实就是将PHP集成到Apache ...