首先对于n<=100的点,直接暴力dp,f[i][j][k]表示时间为i,在i,j位置的方案数,枚举转移即可,期望得分40。

     if(n<=)
{
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=;x++)
for(int y=;y<=;y++)
f[i][x][y]=((f[i-][x-][y]+f[i-][x+][y])%mod+(f[i-][x][y-]+f[i-][x][y+])%mod)%mod;
printf("%d\n",f[n][][]);
return ;
}
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=;x++)
f[i][x][]=(f[i-][x-][]+f[i-][x+][])%mod;
printf("%d\n",f[n][][]);
return ;
}
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=;x++)
for(int y=;y<=;y++)
if(x==||y==)
f[i][x][y]=((f[i-][x-][y]+f[i-][x+][y])%mod+(f[i-][x][y-]+f[i-][x][y+])%mod)%mod;
printf("%d\n",f[n][][]);
return ;
}
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=n+;x++)
for(int y=;y<=n+;y++)
f[i][x][y]=((f[i-][x-][y]+f[i-][x+][y])%mod+(f[i-][x][y-]+f[i-][x][y+])%mod)%mod;
printf("%d\n",f[n][][]);
return ;
}
}

代码实现

type0:这里

type1:显然卡特兰数……

type2:居然是个dp

f[i]表示走了i步回到原点的方案数,枚举第一次回到原点时走过的步数j(为了存在合法解,j为偶数),则此时方案数为f[i-j]*catalan(j/2-1),复杂度为O(n^2)所以最大范围只出到1000.

type3:

枚举横向移动了多少步.横向移动i步时(为了存在合法解,i必须是偶数),方案数为C(n,i)*catalan(i/2)*catalan((n-i)/2)

可以这样考虑:横向移动了i步,因为只能在第一象限,所以横向是一个卡特兰数,同理纵向也是一个卡特兰数。

 #include<iostream>
#include<cstring>
#include<cstdio>
#define LL long long
using namespace std;
const int mod=1e9+;
int n,t;
int f[][][];
LL f1[];
LL jc[];
LL poww(LL a,int b,int mod)
{
LL ans=;
while(b)
{
if(b&)ans=ans*a%mod;
a=a*a%mod;
b=b>>;
}
return ans;
}
LL C(int n,int m)
{
if(m>n)return ;
if(!m)return ;
return jc[n]*poww(jc[m],mod-,mod)%mod*poww(jc[n-m],mod-,mod)%mod;
}
LL H(int i)
{
return C(*i,i)*poww(i+,mod-,mod)%mod;
}
inline int read();
signed main()
{
n=read(),t=read();
if(n<=)
{
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=;x++)
for(int y=;y<=;y++)
f[i][x][y]=((f[i-][x-][y]+f[i-][x+][y])%mod+(f[i-][x][y-]+f[i-][x][y+])%mod)%mod;
printf("%d\n",f[n][][]);
return ;
}
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=;x++)
f[i][x][]=(f[i-][x-][]+f[i-][x+][])%mod;
printf("%d\n",f[n][][]);
return ;
}
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=;x++)
for(int y=;y<=;y++)
if(x==||y==)
f[i][x][y]=((f[i-][x-][y]+f[i-][x+][y])%mod+(f[i-][x][y-]+f[i-][x][y+])%mod)%mod;
printf("%d\n",f[n][][]);
return ;
}
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=n+;x++)
for(int y=;y<=n+;y++)
f[i][x][y]=((f[i-][x-][y]+f[i-][x+][y])%mod+(f[i-][x][y-]+f[i-][x][y+])%mod)%mod;
printf("%d\n",f[n][][]);
return ;
}
}
else
{
LL ans=;
jc[]=;for(int i=;i<=;i++)jc[i]=jc[i-]*i%mod;
if(t==)
{
int s,x,z,y;
for(s=;s<=n/;s++)
{
x=s;z=y=(n-s-x)/;
ans=(ans+jc[n]*poww(jc[s],mod-,mod)%mod*poww(jc[x],mod-,mod)%mod*poww(jc[z],mod-,mod)%mod*poww(jc[y],mod-,mod)%mod)%mod;
}
printf("%lld\n",ans%mod);
return ;
}
if(t==)
{
n=n/;ans=;
for(int i=n+;i<=*n;i++)ans=ans*i%mod;
ans=ans*poww(jc[n],mod-,mod);
printf("%lld\n",ans%mod);
return ;
}
if(t==)
{
f1[]=;
for(int i=;i<=n;i+=)
for(int j=;j<=i;j+=)
f1[i]=(f1[i]+*f1[i-j]*H(j/-)%mod)%mod;
printf("%lld\n",f1[n]%mod);
return ;
}
if(t==)
{
for(int i=;i<=n;i+=)
ans=(ans+C(n,i)*H(i/)%mod*H((n-i)/)%mod)%mod;
printf("%lld\n",ans);
return ;
}
}
}
inline int read()
{
int s=;char a=getchar();
while(a<''||a>'')a=getchar();
while(a>=''&&a<=''){s=s*+a-'';a=getchar();}
return s;
}

暴力和正解全在这里!!

HZOJ 题的更多相关文章

  1. java基础集合经典训练题

    第一题:要求产生10个随机的字符串,每一个字符串互相不重复,每一个字符串中组成的字符(a-zA-Z0-9)也不相同,每个字符串长度为10; 分析:*1.看到这个题目,或许你脑海中会想到很多方法,比如判 ...

  2. 【Java每日一题】20170106

    20170105问题解析请点击今日问题下方的"[Java每日一题]20170106"查看(问题解析在公众号首发,公众号ID:weknow619) package Jan2017; ...

  3. 【Java每日一题】20170105

    20170104问题解析请点击今日问题下方的"[Java每日一题]20170105"查看(问题解析在公众号首发,公众号ID:weknow619) package Jan2017; ...

  4. 【Java每日一题】20170104

    20170103问题解析请点击今日问题下方的"[Java每日一题]20170104"查看(问题解析在公众号首发,公众号ID:weknow619) package Jan2017; ...

  5. 【Java每日一题】20170103

    20161230问题解析请点击今日问题下方的"[Java每日一题]20170103"查看(问题解析在公众号首发,公众号ID:weknow619) package Jan2017; ...

  6. SQL面试笔试经典题(Part 1)

    本文是在Cat Qi的原贴的基础之上,经本人逐题分别在MySql数据库中实现的笔记,持续更新... 参考原贴:http://www.cnblogs.com/qixuejia/p/3637735.htm ...

  7. 刷LeetCode的正确姿势——第1、125题

    最近刷LeetCode比较频繁,就购买了官方的参考电子书 (CleanCodeHandbook),里面有题目的解析和范例源代码,可以省去非常多寻找免费经验分享内容和整理这些资料的时间.惊喜的是,里面的 ...

  8. AWS的SysOps认证考试样题解析

    刚考过了AWS的developer认证,顺手做了一下SysOps的样题.以下是题目和答案. When working with Amazon RDS, by default AWS is respon ...

  9. AWS开发人员认证考试样题解析

    最近在准备AWS的开发人员考试认证.所以特意做了一下考试样题.每道题尽量给出了文档出处以及解析. Which of the following statements about SQS is true ...

随机推荐

  1. OpenLayers测量距离和面积

    <!DOCTYPE html> <html> <head> <title>测量距离和面积</title> <meta http-equ ...

  2. .NET框架之---MEF托管可扩展框架

    MEF简介: 今天学习了下MEF框架,MEF,全称Managed Extensibility Framework(托管可扩展框架).MEF是专门致力于解决扩展性问题的框架,MSDN中对MEF有这样一段 ...

  3. 写论文,没数据?R语言抓取网页大数据

    写论文,没数据?R语言抓取网页大数据 纵观国内外,大数据的市场发展迅猛,政府的扶持也达到了空前的力度,甚至将大数据纳入发展战略.如此形势为社会各界提供了很多机遇和挑战,而我们作为卫生(医学)统计领域的 ...

  4. 【JZOJ3299】【SDOI2013】保护出题人 三分+凸壳

    题面 ​出题人铭铭认为给SDOI2012 出题太可怕了,因为总要被骂,于是他又给SDOI2013 出题了. 参加SDOI2012 的小朋友们释放出大量的僵尸,企图攻击铭铭的家.而你作为SDOI2013 ...

  5. Ajax系列之二:核心对象XMLHttpRquest

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/zhanghongjie0302/article/details/31432939           ...

  6. JavaScript-- 函数既是函数又是对象

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. iOS block 用法

    1.定义Block /* 回传void ,参数也是void 的block*/ void (^blockReturningVoidWithVoidArgument)( void ); /* 回传整数,两 ...

  8. 移动端以及 PC浏览器页面分享到朋友圈等的功能实现

    我们经常可以在一些 app上看到分享到朋友圈.微信好友.qq好友等功能,例如 饿了么.美团等 app,下单之后就会弹出给好友发红包的 modal窗,这在 app上很常见,app的权限可以很大,甚至连启 ...

  9. ns2 错误(_O17 cmd line 1) 解决

    重新安装ns2,发现了如下错误: (_o17 cmd line 1) invoked from within "_o17 cmd addr" invoked from within ...

  10. SQLServer —— EXISTS子查询

    一.删除数据库 use master go if exists (select * from sysdatabases where name = 'Demo') drop database Demo ...