HZOJ 题
首先对于n<=100的点,直接暴力dp,f[i][j][k]表示时间为i,在i,j位置的方案数,枚举转移即可,期望得分40。
if(n<=)
{
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=;x++)
for(int y=;y<=;y++)
f[i][x][y]=((f[i-][x-][y]+f[i-][x+][y])%mod+(f[i-][x][y-]+f[i-][x][y+])%mod)%mod;
printf("%d\n",f[n][][]);
return ;
}
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=;x++)
f[i][x][]=(f[i-][x-][]+f[i-][x+][])%mod;
printf("%d\n",f[n][][]);
return ;
}
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=;x++)
for(int y=;y<=;y++)
if(x==||y==)
f[i][x][y]=((f[i-][x-][y]+f[i-][x+][y])%mod+(f[i-][x][y-]+f[i-][x][y+])%mod)%mod;
printf("%d\n",f[n][][]);
return ;
}
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=n+;x++)
for(int y=;y<=n+;y++)
f[i][x][y]=((f[i-][x-][y]+f[i-][x+][y])%mod+(f[i-][x][y-]+f[i-][x][y+])%mod)%mod;
printf("%d\n",f[n][][]);
return ;
}
}
代码实现
type0:这里
type1:显然卡特兰数……
type2:居然是个dp
f[i]表示走了i步回到原点的方案数,枚举第一次回到原点时走过的步数j(为了存在合法解,j为偶数),则此时方案数为f[i-j]*catalan(j/2-1),复杂度为O(n^2)所以最大范围只出到1000.
type3:
枚举横向移动了多少步.横向移动i步时(为了存在合法解,i必须是偶数),方案数为C(n,i)*catalan(i/2)*catalan((n-i)/2)
可以这样考虑:横向移动了i步,因为只能在第一象限,所以横向是一个卡特兰数,同理纵向也是一个卡特兰数。
#include<iostream>
#include<cstring>
#include<cstdio>
#define LL long long
using namespace std;
const int mod=1e9+;
int n,t;
int f[][][];
LL f1[];
LL jc[];
LL poww(LL a,int b,int mod)
{
LL ans=;
while(b)
{
if(b&)ans=ans*a%mod;
a=a*a%mod;
b=b>>;
}
return ans;
}
LL C(int n,int m)
{
if(m>n)return ;
if(!m)return ;
return jc[n]*poww(jc[m],mod-,mod)%mod*poww(jc[n-m],mod-,mod)%mod;
}
LL H(int i)
{
return C(*i,i)*poww(i+,mod-,mod)%mod;
}
inline int read();
signed main()
{
n=read(),t=read();
if(n<=)
{
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=;x++)
for(int y=;y<=;y++)
f[i][x][y]=((f[i-][x-][y]+f[i-][x+][y])%mod+(f[i-][x][y-]+f[i-][x][y+])%mod)%mod;
printf("%d\n",f[n][][]);
return ;
}
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=;x++)
f[i][x][]=(f[i-][x-][]+f[i-][x+][])%mod;
printf("%d\n",f[n][][]);
return ;
}
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=;x++)
for(int y=;y<=;y++)
if(x==||y==)
f[i][x][y]=((f[i-][x-][y]+f[i-][x+][y])%mod+(f[i-][x][y-]+f[i-][x][y+])%mod)%mod;
printf("%d\n",f[n][][]);
return ;
}
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=n+;x++)
for(int y=;y<=n+;y++)
f[i][x][y]=((f[i-][x-][y]+f[i-][x+][y])%mod+(f[i-][x][y-]+f[i-][x][y+])%mod)%mod;
printf("%d\n",f[n][][]);
return ;
}
}
else
{
LL ans=;
jc[]=;for(int i=;i<=;i++)jc[i]=jc[i-]*i%mod;
if(t==)
{
int s,x,z,y;
for(s=;s<=n/;s++)
{
x=s;z=y=(n-s-x)/;
ans=(ans+jc[n]*poww(jc[s],mod-,mod)%mod*poww(jc[x],mod-,mod)%mod*poww(jc[z],mod-,mod)%mod*poww(jc[y],mod-,mod)%mod)%mod;
}
printf("%lld\n",ans%mod);
return ;
}
if(t==)
{
n=n/;ans=;
for(int i=n+;i<=*n;i++)ans=ans*i%mod;
ans=ans*poww(jc[n],mod-,mod);
printf("%lld\n",ans%mod);
return ;
}
if(t==)
{
f1[]=;
for(int i=;i<=n;i+=)
for(int j=;j<=i;j+=)
f1[i]=(f1[i]+*f1[i-j]*H(j/-)%mod)%mod;
printf("%lld\n",f1[n]%mod);
return ;
}
if(t==)
{
for(int i=;i<=n;i+=)
ans=(ans+C(n,i)*H(i/)%mod*H((n-i)/)%mod)%mod;
printf("%lld\n",ans);
return ;
}
}
}
inline int read()
{
int s=;char a=getchar();
while(a<''||a>'')a=getchar();
while(a>=''&&a<=''){s=s*+a-'';a=getchar();}
return s;
}
暴力和正解全在这里!!
HZOJ 题的更多相关文章
- java基础集合经典训练题
第一题:要求产生10个随机的字符串,每一个字符串互相不重复,每一个字符串中组成的字符(a-zA-Z0-9)也不相同,每个字符串长度为10; 分析:*1.看到这个题目,或许你脑海中会想到很多方法,比如判 ...
- 【Java每日一题】20170106
20170105问题解析请点击今日问题下方的"[Java每日一题]20170106"查看(问题解析在公众号首发,公众号ID:weknow619) package Jan2017; ...
- 【Java每日一题】20170105
20170104问题解析请点击今日问题下方的"[Java每日一题]20170105"查看(问题解析在公众号首发,公众号ID:weknow619) package Jan2017; ...
- 【Java每日一题】20170104
20170103问题解析请点击今日问题下方的"[Java每日一题]20170104"查看(问题解析在公众号首发,公众号ID:weknow619) package Jan2017; ...
- 【Java每日一题】20170103
20161230问题解析请点击今日问题下方的"[Java每日一题]20170103"查看(问题解析在公众号首发,公众号ID:weknow619) package Jan2017; ...
- SQL面试笔试经典题(Part 1)
本文是在Cat Qi的原贴的基础之上,经本人逐题分别在MySql数据库中实现的笔记,持续更新... 参考原贴:http://www.cnblogs.com/qixuejia/p/3637735.htm ...
- 刷LeetCode的正确姿势——第1、125题
最近刷LeetCode比较频繁,就购买了官方的参考电子书 (CleanCodeHandbook),里面有题目的解析和范例源代码,可以省去非常多寻找免费经验分享内容和整理这些资料的时间.惊喜的是,里面的 ...
- AWS的SysOps认证考试样题解析
刚考过了AWS的developer认证,顺手做了一下SysOps的样题.以下是题目和答案. When working with Amazon RDS, by default AWS is respon ...
- AWS开发人员认证考试样题解析
最近在准备AWS的开发人员考试认证.所以特意做了一下考试样题.每道题尽量给出了文档出处以及解析. Which of the following statements about SQS is true ...
随机推荐
- Twitter web information
http://developer.51cto.com/art/201307/404612.htm 150M active users 300K Qps (read, only 6000 write/s ...
- 提升mysql服务器性能(索引与查询优化)
原文:提升mysql服务器性能(索引与查询优化) 版权声明:皆为本人原创,复制必究 https://blog.csdn.net/m493096871/article/details/90138407 ...
- Docker搭建ELK的javaweb应用日志收集存储分析系统
1.启动elasticsearch docker run -d --name myes -p 9200:9200 elasticsearch:2.3 2.启动kibana docker run --n ...
- 洛谷P1969 [NOIP2013提高组Day2T1] 积木大赛
P1969 积木大赛 题目描述 春春幼儿园举办了一年一度的“积木大赛”.今年比赛的内容是搭建一座宽度为n的大厦,大厦可以看成由n块宽度为1的积木组成,第i块积木的最终高度需要是hi. 在搭建开始之前, ...
- 洛谷P1052 过河
P1052 过河 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上. 由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青 ...
- 洛谷P2912 [USACO08OCT]牧场散步Pasture Walking [2017年7月计划 树上问题 01]
P2912 [USACO08OCT]牧场散步Pasture Walking 题目描述 The N cows (2 <= N <= 1,000) conveniently numbered ...
- 【linux配置】在VMware中为Redhat HAT配置本地yum源
在VMware中为Redhat HAT配置本地yum源 今天准备使用CM安装大数据环境,到需要几台机器都使用同一套yum源才可以,所以想到将Redhat镜像文件拷贝到虚拟机中,在挂起使用,最后通过ht ...
- WPF快速入门系列(6)—— WPF资源和样式
一.引言 WPF资源系统可以用来保存一些公有对象和样式,从而实现重用这些对象和样式的作用.而WPF样式是重用元素的格式的重要手段,可以理解样式就如CSS一样,尽管我们可以在每个控件中定义格式,但是如果 ...
- Leetcode3.Longest Substring Without Repeating Characters无重复字符的最长字串
给定一个字符串,找出不含有重复字符的最长子串的长度. 示例 1: 输入: "abcabcbb" 输出: 3 解释: 无重复字符的最长子串是 "abc",其长度为 ...
- dingo/api 使用 知识
Dingo 能为Laravel提供一整套包括从路由,到认证的RESTful API开发工具 Laravel & Lumen RESTFul API 扩展包:Dingo API(一) —— 安装 ...