题目太长啦!文档下载【传送门

第1题

简述:设计一个5*5的单位矩阵。

function A = warmUpExercise()
A = [];
A = eye(5);
end

运行结果:

第2题

简述:实现单变量线性回归。

第1步:加载数据文件;

data = load('ex1data1.txt');
X = data(:, 1); y = data(:, 2);
m = length(y); % number of training examples
% Plot Data
% Note: You have to complete the code in plotData.m
plotData(X, y);

第2步:plotData函数实现训练样本的可视化;

function plotData(x, y)
figure;
plot(x,y,'rx','MarkerSize',10);
ylabel('Profit in $10,000s');
xlabel('Population of City in 10,000s');
end 

第3步:使用梯度下降函数计算局部最优解,并显示线性回归;

X = [ones(m, 1), data(:,1)]; % Add a column of ones to x
theta = zeros(2, 1); % initialize fitting parameters
% Some gradient descent settings
iterations = 1500;
alpha = 0.01;
% run gradient descent
theta = gradientDescent(X, y, theta, alpha, iterations);
% print theta to screen
fprintf('Theta found by gradient descent:\n');
fprintf('%f\n', theta);
% Plot the linear fit
hold on; % keep previous plot visible
plot(X(:,2), X*theta, '-')
legend('Training data', 'Linear regression')
hold off % don't overlay any more plots on this figure  

第4步:实现梯度下降gradientDescent函数;

function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)

% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1); for iter = 1:num_iters
theta = theta - alpha/length(y)*(X'*(X*theta-y));
% Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta);
end end

第5步:实现代价计算computeCost函数;

function J = computeCost(X, y, theta)
m = length(y); % number of training examples
J = 1/(2*m)*sum((X*theta-y).^2);
end

第6步:实现三维图、轮廓图的显示。

% Grid over which we will calculate J
theta0_vals = linspace(-10, 10, 100);
theta1_vals = linspace(-1, 4, 100); % initialize J_vals to a matrix of 0's
J_vals = zeros(length(theta0_vals), length(theta1_vals)); % Fill out J_vals
for i = 1:length(theta0_vals)
for j = 1:length(theta1_vals)
t = [theta0_vals(i); theta1_vals(j)];
J_vals(i,j) = computeCost(X, y, t);
end
end % Because of the way meshgrids work in the surf command, we need to
% transpose J_vals before calling surf, or else the axes will be flipped
J_vals = J_vals';
% Surface plot
figure;
surf(theta0_vals, theta1_vals, J_vals);
xlabel('\theta_0'); ylabel('\theta_1'); % Contour plot
figure;
% Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20))
xlabel('\theta_0'); ylabel('\theta_1');
hold on;
plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2);

运行结果:

第3题

简述:实现多元线性回归。

第1步:加载数据文件;

data = load('ex1data2.txt');
X = data(:, 1:2);
y = data(:, 3);
m = length(y);
[X mu sigma] = featureNormalize(X);
% Add intercept term to X
X = [ones(m, 1) X];

第2步:均值归一化featureNormalize函数实现;

function [X_norm, mu, sigma] = featureNormalize(X)

X_norm = X;
mu = zeros(1, size(X, 2));
sigma = zeros(1, size(X, 2));
mu = mean(X,1);
sigma = std(X,0,1);
X_norm = (X_norm-mu)./sigma; end

第3步:使用梯度下降函数计算局部最优解,并显示线性回归;

% Choose some alpha value
alpha = 0.05;
num_iters = 100; % Init Theta and Run Gradient Descent
theta = zeros(3, 1);
[theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters); % Plot the convergence graph
figure;
plot(1:numel(J_history), J_history, '-b', 'LineWidth', 2);
xlabel('Number of iterations');
ylabel('Cost J');

第4步:实现梯度下降gradientDescentMulti函数;

function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)

m = length(y); % number of training examples
J_history = zeros(num_iters, 1); for iter = 1:num_iters
theta = theta - alpha/m*(X'*(X*theta-y));
% Save the cost J in every iteration
J_history(iter) = computeCostMulti(X, y, theta);
end end

第5步:实现代价计算computeCostMulti函数;

function J = computeCostMulti(X, y, theta)
m = length(y); % number of training examples
J = 1/(2*m)*sum((X*theta-y).^2);%J=(X*theta-y)'*(X*theta-y)/(2*m);
end

运行结果:

第6步:使用上述结果对“the price of a 1650 sq-ft, 3 br house”进行预测;

X1 = [1,1650,3];
X1(2:3) = (X1(2:3)-mu)./sigma;
price = X1*theta;

预测结果: 

第7步:使用正规方程法求解;

%%Load Data
data = csvread('ex1data2.txt');
X = data(:, 1:2);
y = data(:, 3);
m = length(y); % Add intercept term to X
X = [ones(m, 1) X]; % Calculate the parameters from the normal equation
theta = normalEqn(X, y);

第8步:实现normalEqn函数;

function [theta] = normalEqn(X, y)
theta = zeros(size(X, 2), 1);
theta = (X'*X)^(-1)*X'*y;
end

第9步:使用上述结果对“the price of a 1650 sq-ft, 3 br house”再次进行预测;

price = [1,1650,3]*theta;

预测结果:(与梯度下降法结果很接近)

机器学习作业(一)线性回归——Matlab实现的更多相关文章

  1. Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)

    title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...

  2. 机器学习:单元线性回归(python简单实现)

    文章简介 使用python简单实现机器学习中单元线性回归算法. 算法目的 该算法核心目的是为了求出假设函数h中多个theta的值,使得代入数据集合中的每个x,求得的h(x)与每个数据集合中的y的差值的 ...

  3. 機器學習基石(Machine Learning Foundations) 机器学习基石 作业四 Q13-20 MATLAB实现

    大家好,我是Mac Jiang,今天和大家分享Coursera-NTU-機器學習基石(Machine Learning Foundations)-作业四 Q13-20的MATLAB实现. 曾经的代码都 ...

  4. Coursera-AndrewNg(吴恩达)机器学习笔记——第二周编程作业(线性回归)

    一.准备工作 从网站上将编程作业要求下载解压后,在Octave中使用cd命令将搜索目录移动到编程作业所在目录,然后使用ls命令检查是否移动正确.如: 提交作业:提交时候需要使用自己的登录邮箱和提交令牌 ...

  5. 机器学习作业(五)机器学习算法的选择与优化——Matlab实现

    题目下载[传送门] 第1步:读取数据文件,并可视化: % Load from ex5data1: % You will have X, y, Xval, yval, Xtest, ytest in y ...

  6. 机器学习作业(一)线性回归——Python(numpy)实现

    题目太长啦!文档下载[传送门] 第1题 简述:设计一个5*5的单位矩阵. import numpy as np A = np.eye(5) print(A) 运行结果: 第2题 简述:实现单变量线性回 ...

  7. 机器学习作业(八)异常检测与推荐系统——Matlab实现

    题目下载[传送门] 第1题 简述:对于一组网络数据进行异常检测. 第1步:读取数据文件,使用高斯分布计算 μ 和 σ²: % The following command loads the datas ...

  8. 机器学习作业(七)非监督学习——Matlab实现

    题目下载[传送门] 第1题 简述:实现K-means聚类,并应用到图像压缩上. 第1步:实现kMeansInitCentroids函数,初始化聚类中心: function centroids = kM ...

  9. 机器学习作业(六)支持向量机——Matlab实现

    题目下载[传送门] 第1题 简述:支持向量机的实现 (1)线性的情况: 第1步:读取数据文件,可视化数据: % Load from ex6data1: % You will have X, y in ...

随机推荐

  1. [MongoDB]评估使用mongodb的五个因素

    企业选择 NOSQL 或非表格结构数据库,评估时应从以下五个关键维度来考虑:• 数据模型的类型• 查询模型是否能满足灵活的查询需求• 事务模型类型,以及一致性属于强一致性还是最终一致性• APIs 的 ...

  2. XOR and Favorite Number CodeForces - 617E

    a[i]^a[i+1]--a[j]=k; 处理前缀和pre[i] 那么上式可以表示为pre[i-1]^pre[j]=k; #include<bits/stdc++.h> using nam ...

  3. 在视觉可视化中如何使用ScaleBreaks-比例中断

    从lightningChart V8开始,这项图表控件产品开始支持X轴的Scale break功能. 这个功能的主要作用是排除选定的X轴范围,例如互动交易时间/日期或者机器停产时间等.如果有一部分的数 ...

  4. Linux系统的安装和常用命令

    (1)切换到目录 /usr/bin: (2)查看目录/usr/local 下所有的文件: (3)进入/usr 目录,创建一个名为 test 的目录,并查看有多少目录存在: (4)在/usr 下新建目录 ...

  5. minio gateway 代理s3 存储

    以前有写过使用minio gataway 代理nas 的,实际上还可以代理s3 ,hdfs....,以下是一个gatway 带来nas 以及s3 集成的模式 环境准备 docker-compose文件 ...

  6. css flex弹性布局学习总结

    一.简要介绍 flex( flexible box:弹性布局盒模型),是2009年w3c提出的一种可以简洁.快速弹性布局的属性. 主要思想是给予容器控制内部元素高度和宽度的能力.目前已得到以下浏览器支 ...

  7. 纪中18日c组模拟赛

    T2 GMOJ2127. 电子表格 (File IO): input:excel.in output:excel.out 时间限制: 1000 ms  空间限制: 262144 KB  具体限制   ...

  8. maven的核心概念——POM

    Project Object Model:项目对象模型.将Java工程的相关信息封装为对象作为便于操作和管理的模型.Maven工程的核心配置.可以说学习Maven就是学习pom.xml文件中的配置. ...

  9. python字符串前面加上'r'的作用

    在打开文件的时候open(r'c:\....') 加r和不加''r是有区别的 'r'是防止字符转义的 如果路径中出现'\t'的话 不加r的话\t就会被转义 而加了'r'之后'\t'就能保留原有的样子 ...

  10. fqa0

    FQA 0 - Plan 9 简介 0.1 - 什么是 Plan 9 Plan 9 是一个研究操作系统,来自于在 Bell 实验室计算机科学研究中心(CSRC)同样创造了 UNIX 的团队.它出现在2 ...