和朴素的素数筛法一样,flag数组,记录x是否为素数

flag[x]=0,x为合数

falg[x]=1,x为素数

flag[1],无定义

其核心思想是,用x筛除与之差异最小的y,达到时间上O(n)的目的

何为差异最小,呢?

基于唯一分解定理,我们认为,x的素数分解集合(是可重集)

大小记为|x|,如果|x|+1=|y|,我们则认为x,y差异最小

即此时用x筛去y

更重要的一点:

if(i%p[j]==)break;

什么意思呢?

可以这样理解,此时的break是为了下一次筛(暂时的失败是为了下一次更好的成功)

应为,能被i筛去的,一定能被p[j]筛去,p[j]后面的下一次反正会用到

所以让p[j]和它后面的素数去筛就好了

举一个栗子:

用2,3我们可以筛去4,6,9

像这样:

1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17

a[0  0  0  1  0  1  0  0  1  0   0   0   0   0   0   0   0 ]

但是

4,只会筛去8,而没有12

因为,12是留给6筛的,所以代码就很简单了

 typedef long long ll;
const int MAXP=+;
ll p[MAXP],flag[MAXP],cnt;
void prime(int n){
for(int i=;i<=n;i++){
if(!flag[i])p[++cnt]=i;
for(int j=;j<=cnt && i*p[j]<=n;j++){
flag[i*p[j]]=;
if(i%p[j]==)break;
}
}
}
int main(){
prime();
for(int i=;i<=cnt;i++)printf("p[%d]=%lld\n",i,p[i]);
return ;
}

prime(100)

线性筛-prime,强大O(n)的更多相关文章

  1. 线性筛prime/phi/miu/求逆元模板

    这绿题贼水...... 原理我不讲了,随便拿张草稿纸推一下就明白了. #include <cstdio> using namespace std; ; int su[N],ans,top; ...

  2. P1217 [USACO1.5]回文质数 Prime Palindromes(技巧+暴力枚举+线性筛)

    技巧:就是偶数位的回文数字一定不是质数---------证明:奇数位之和sum1==偶数位之和sum2的数字可以被11整除.(11除外,这是一个坑点) 最高位,最低位必须是 1, 3, 7, 9 暴力 ...

  3. POJ 3126 - Prime Path - [线性筛+BFS]

    题目链接:http://poj.org/problem?id=3126 题意: 给定两个四位素数 $a,b$,要求把 $a$ 变换到 $b$.变换的过程每次只能改动一个数,要保证每次变换出来的数都是一 ...

  4. SPOJ PRIME1 - Prime Generator(线性筛)

    Peter wants to generate some prime numbers for his cryptosystem. Help him! Your task is to generate ...

  5. 线性筛-euler,强大O(n)

    欧拉函数是少于或等于n的数中与n互质的数的数目 φ(1)=1(定义) 类似与莫比乌斯函数,基于欧拉函数的积性 φ(xy)=φ(x)φ(y) 由唯一分解定理展开显然,得证 精髓在于对于积性的应用: ){ ...

  6. 线性筛-mobius,强大O(n)

    首先,你要知道什么是莫比乌斯函数 然后,你要知道什么是积性函数 最后,你最好知道什么是线性筛 莫比乌斯反演 积性函数 线性筛,见上一篇 知道了,就可以愉快的写mobius函数了 由定义: μ(n)= ...

  7. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  8. 【BZOJ-4514】数字配对 最大费用最大流 + 质因数分解 + 二分图 + 贪心 + 线性筛

    4514: [Sdoi2016]数字配对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 726  Solved: 309[Submit][Status ...

  9. 洛谷P3383 【模板】线性筛素数

    P3383 [模板]线性筛素数 256通过 579提交 题目提供者HansBug 标签 难度普及- 提交  讨论  题解 最新讨论 Too many or Too few lines 样例解释有问题 ...

随机推荐

  1. 843. n-皇后问题(dfs+输出各种情况)

    n-皇后问题是指将 n 个皇后放在 n∗n 的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行.同一列或同一斜线上. 现在给定整数n,请你输出所有的满足条件的棋子摆法. 输入格式 ...

  2. overfitting &&underfitting

    1.过拟合 然能完美的拟合模型,但是拟合出来的模型会含有大量的参数,将会是一个含有大量参数的非常庞大的模型,因此不利于实现 1.1解决过拟合的方法 1.1.1 特征选择,通过选取特征变量来减少模型参数 ...

  3. VS的使用技巧记录:

    调试: F5:调试运行 会在编译前进行debug F10:单步步过   遇到函数不会进入函数内部执行 F11:单步步入   遇到函数会进入函数一步一步执行 ctrl+F5:直接运行不调试

  4. CTF中压缩文件的常见解法

    此篇记录两篇记录的比较好的关于压缩文件破解的总结 链接:https://blog.csdn.net/xuqi7/article/details/71437882 https://blog.csdn.n ...

  5. LED Holiday Light -holiday Light Inspection Implementation Recommendations

    China LED Holiday Light Factory & Ninghai County Haohua Electronic Appliance Co., Ltd. pointed o ...

  6. idea AutoWired 报红

  7. JS高级---递归案例

    递归案例     递归案例: 求一个数字各个位数上的数字的和:  123   --->6 ---1+2+3 //递归案例:求一个数字各个位数上的数字的和: 123 --->6 ---1+2 ...

  8. 【翻译】浅析为何使用融合CDN是大趋势

    使用传统CDN的用户遇到的新问题 随着云计算时代的快速发展,尤其是流媒体大视频时代的到来,用户在是使用过往CDN节点资源调配将面临很多问题: 问题1: 流媒体时代不局限于静态内容分发,直播点播等视频服 ...

  9. Xshell5配置ssh免密码登录-公钥与私钥登录linux服务器(xshell如何登陆上阿里云服务器)

    原文地址:https://blog.csdn.net/longgeaisisi/article/details/78680180 ssh登录提供两种认证方式:口令(密码)认证方式和密钥认证方式.其中口 ...

  10. EF简单的CodeFirst示例(自己创建数据库,不使用数据迁移)

    1.新建一个控制台应用程序 2.右键引用--管理NuGet程序包,安装如下几项 3.打开App.config文件,加入如下代码: <connectionStrings>    <ad ...