CF1280E Kirchhoff's Current Loss
题意
做法
考虑一个子电路图\(G\),设得到有效电阻为\(x\),费用为\(f_G(x)\),通过归纳易得\(f_G(x)\)是关于\(x\)的一个一次函数,即\(f_G(x)=k_Gx\)
考虑电路图\(G\)的若干个子电路图\(G_1,G_2,...,G_n\)
- 串联:设子电路图的系数分别为\(k_{G_1}\le k_{G_2}\le ...\le k_{G_n}\),之间把\(x\)传到\(G_1\)就行了
故\(k_G=k_{G_1}\) - 并联:有\(\frac{1}{x}=\sum\limits_{i=1}^n \frac{1}{x_i}\)
我们用柯西不等式来求\(k_G\):
\(f_G(x)=x(\sum\limits_{i=1}^n \frac{1}{x_i} )(\sum\limits_{i=1}^n k_{G_i}x_i)\ge x(\sum\limits_{i=1}^n \sqrt \frac{1}{x_i}\sqrt {k_{G_i}x_i})^2=x(\sum\limits_{i=1}^n \sqrt {k_{G_i}})^2\)
故\(k_{G_i}=(\sum\limits_{i=1}^n \sqrt {k_{G_i}})^2\)
根据柯西不等式,取等号的充要条件是:存在\(\lambda\in\mathbb{R},\sqrt {k_{G_i}x_i}=\frac{\lambda}{\sqrt{x_i}}\)
为了递推到\(x_i\),我们需要不用到\(x_i\)得到\(\lambda\):
\(\frac{1}{x_i}=\frac{\sqrt{k_{G_i}}}{\lambda},\sum\limits_{i=1}^n \frac{1}{x_i}=\frac{\sum\limits_{i=1}^n \sqrt{k_{G_i}}}{\lambda},x\sum\limits_{i=1}^n \frac{1}{x_i}=x\frac{\sum\limits_{i=1}^n \sqrt{k_{G_i}}}{\lambda},1=x\frac{\sum\limits_{i=1}^n \sqrt{k_{G_i}}}{\lambda}\)
故\(\lambda=x\sum\limits_{i=1}^n \sqrt{k_{G_i}}\)
当然目前为止我们都是用实数递推的,但递推底层(单电阻)为\(k=1\),根据归纳容易推得上述根号下的开完根号都为整数
所以不需要考虑实数
CF1280E Kirchhoff's Current Loss的更多相关文章
- Codeforces Round #607 (Div. 1) Solution
从这里开始 比赛目录 我又不太会 div 1 A? 我菜爆了... Problem A Cut and Paste 暴力模拟一下. Code #include <bits/stdc++.h> ...
- (转)Image Segmentation with Tensorflow using CNNs and Conditional Random Fields
Daniil's blog Machine Learning and Computer Vision artisan. About/ Blog/ Image Segmentation with Ten ...
- Theano3.2-练习之数据集及目标函数介绍
来自http://deeplearning.net/tutorial/gettingstarted.html#gettingstarted 一.下载 在后续的每个学习算法上,都需要下载对应的文档,如果 ...
- [另开新坑] 算导v3 #26 最大流 翻译
26 最大流 就像我们可以对一个路网构建一个有向图求最短路一样,我们也可以将一个有向图看成是一个"流量网络(flow network)",用它来回答关于流的问题. Just as ...
- (原)torch的训练过程
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6221622.html 参考网址: http://ju.outofmemory.cn/entry/284 ...
- (原)Ubuntu16中安装cuda toolkit
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5655957.html 参考网址: https://devtalk.nvidia.com/default ...
- 利用python深度学习算法来绘图
可以画画啊!可以画画啊!可以画画啊! 对,有趣的事情需要讲三遍. 事情是这样的,通过python的深度学习算法包去训练计算机模仿世界名画的风格,然后应用到另一幅画中,不多说直接上图! 这个是世界名画& ...
- keras04 GAN simple
reference: GAN 讲解 https://blog.csdn.net/u010900574/article/details/53427544 命令行解析 https://blog.csdn. ...
- Revisiting Network Support for RDMA
重新审视RDMA的网络支持 本文为SIGCOMM 2018会议论文. 笔者翻译了该论文.由于时间仓促,且笔者英文能力有限,错误之处在所难免:欢迎读者批评指正. 本文及翻译版本仅用于学习使用.如果有任何 ...
随机推荐
- 关于线段树的感悟(Segment Tree)
线段树的感悟 : 学过的东西一定要多回头看看,不然真的会忘个干干净净. 线段树的 Introduction : English Name : Segment Tree 顾名思义 : 该数据结构由两个重 ...
- 【C++】C++程序加载lib静态库
使用Visual Studio 编写C++程序有几种配置lib的方法,以下是在代码中加载lib文件的方法: 在项目所在目录下创建文件夹lib,将lib文件此路径下,包括Debug和Release两种模 ...
- 06-HTML
今日知识 1. HTML基本语法 2. 特殊符号表示 3.总结 HTML 1. Hyper Text Mark Language 超文本标记语言 * 超文本: * 超文本是用超链接的方法,将各种不同空 ...
- vue 信使 ------fetch、axios
fetch 1.什么是fetch 相当于promise 必须写两个then 第一个then返回状态码 返回成json格式 第二个then返回json数据 2.使用方法 $ npm install fe ...
- MSSqlServer访问远程数据库
--第一部分(要点)--永久访问方式(需对访问远程数据库进行经常性操作)时设置链接数据库Exec sp_addlinkedserver 'MyLinkServer','','SQLOLEDB','远程 ...
- k8s 安装 prometheus 过程记录
开始以为只要安装 prometheus-operator 就行了. git clone https://github.com/coreos/prometheus-operator.git cd pro ...
- hive执行计划简单分析
原始SQL: select a2.ISSUE_CODE as ISSUE_CODE, a2.FZQDM as FZQDM, a2.FZQLB as FZQLB, a2.FJJDM as FJJDM, ...
- SELinux 和 iptables 开启关闭
SELinux 是 2.6 版本的 Linux 内核中提供的强制访问控制(MAC)系统.对于目前可用的 Linux安全模块来说,SELinux 是功能最全面,而且测试最充分的,它是在 20 年的 MA ...
- 论文翻译:Speech Enhancement Based on the General Transfer Function GSC and Postfiltering
论文地址:基于通用传递函数GSC和后置滤波的语音增强 博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/12232341.html 摘要 在语音增强应 ...
- mac系统目录结构
1 符合unix传统的目录 /bin 传统unix命令的存放目录,如ls,rm,mv等. /sbin 传统unix管理类命令存放目录,如fdisk,ifconfig等等. /usr 第三方程序安装目录 ...